
September 17, 2002 Doc 6, Threads part 1 slide # 1

CS 580 Client-Server Programming
Fall Semester, 2002

Doc 6 Threads part 1
Contents

Concurrent Programming...3
Threads - Light Weight Processes...4

Creating Threads ...5
Multiple Processors...12
Thread Scheduling ..14

Priorities...15
Time-slicing...20

Java Types of Threads: user and daemon..22
Thread Control...24

Thread States..24
Yield..25
Suspend & Resume ..27
Killing a Thread ...29

References

The Java Programming Language, 2nd Ed. Arnold & Gosling, Addison-Wesley, 1998

The Java Language Specification, Gosling, Joy, Steele, Addison-Wesley, 1996, Chapter 17
Threads and Locks.

Java 1.4.1 on-line documentation http://java.sun.com/j2se/1.4/docs/api/overview-
summary.html

VisualWorks Application Developers Guide, Cincom, Chapter 11 (Smalltalk), see
docs/AppDevGuide.pdf in the VW installation

Copyright ©, All rights reserved. 2000 SDSU & Roger Whitney, 5500 Campanile Drive,
San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml)
license defines the copyright on this document.

September 17, 2002 Doc 6, Threads part 1 slide # 2

Reading

Java Network Programming, 2nd Ed., Harold, Chapter 5. (Java)

VisualWorks Application Developers Guide, Cincom, Chapter
11 (Smalltalk), see docs/AppDevGuide.pdf in the VW
installation

Source Code

Smalltalk
See rugby.sdsu.edu_cs580 Store repository
Package ThreadLecture1

Java
CVS root ~whitney/cs580/cvsroot
Module name threadExamples

September 17, 2002 Doc 6, Threads part 1 slide # 3

Concurrent Programming
The ability to perform concurrent programming is part of the Java programming
language. That is different parts of the same program can be executing at the same
time, or behave if they are executing at the same time. Java uses threads to achieve
concurrency. Writing concurrent programs presents a number of issues that do not
occur in writing sequential code.

Safety

Two different threads could write to the same memory location at the same time,
leaving the memory location in an improper state.

Liveness

Threads can become deadlocked, each thread waiting forever for the other to
perform a task. Threads can become livelocked, waiting forever to get their turn to
execute.

Nondeterminism

Thread activities can become intertwined. Different executions of a program with the
same input can produce different results. This can make program hard to debug.

Communication

Different threads in the same program execute autonomously from each other.
Communication between threads is an issue.

September 17, 2002 Doc 6, Threads part 1 slide # 4

Threads - Light Weight Processes
A thread is an active entity that shares the same name space as the program that
created the thread. This means that two threads in a program can access the same
data.

Difference from Processes (fork())

Processes (Heavy Weight)
Child process gets a copy of parents variables
Relatively expensive to start
Don't have to worry about concurrent access to variables

Thread (Light Weight Process)
Child process shares parents variables
Relatively cheap to start
Concurrent access to variables is an issue

September 17, 2002 Doc 6, Threads part 1 slide # 5

Creating Threads
Smalltalk

fork
• Creates a process (thread) from a block
• Starts the process

Transcript
clear;
show: 'Create the thread';
cr.

[1 to: 4 do:
[:each |
Transcript

show: 'Message ' , each printString;
cr]] fork.

Transcript
show: 'Thread started. The End';
cr

Output
Create the thread
Thread started. The End
Message 1
Message 2
Message 3
Message 4

Note later we will discuss some a problem related to threads and the VW GUI. For now
I will ignore the problem.

September 17, 2002 Doc 6, Threads part 1 slide # 6

newProcess

| hello |
hello := [Transcript show: 'Hi';cr] newProcess.

“hello will not run unit it is activated via resume”

hello resume.

Both fork and newProcess return an instance of Process

With Arguments

| printer printProcess |
printer :=

[:a :b :c |
Transcript

print: a + b + c;
cr;
flush].

printProcess := printer newProcessWithArguments: #(1 2 3).
printProcess resume

September 17, 2002 Doc 6, Threads part 1 slide # 7

Creating Threads
Java

There are two different methods for creating a thread: extending the Thread class or
implementing the Runnable interface. The first method is shown on this slide, the
second on the next slide.

In the Thread subclass, implement the run() method. The signature of run() must be as it
is in this example. run() is the entry point or starting point (or main) of your thread. To
start a thread, create an object from your Thread class. Send the "start()" method to the
thread object. This will create the new thread, start it as an active entity in your
program, and call the run() method in the thread object. Do not call the run() method
directly. Calling the run() directly executes the method in the normal sequential manner.

class ExtendingThreadExample extends Thread {
public void run() {

for (int count = 0; count < 4; count++)
System.out.println("Message " + count +

 " From: Mom");
}

public static void main(String[] args) {
ExtendingThreadExample parallel =

new ExtendingThreadExample();
System.out.println("Create the thread");
parallel.start();
System.out.println("Started the thread");
System.out.println("End");

}
}

Output
Create the thread
Message 0 From: Mom
Message 1 From: Mom
Message 2 From: Mom
Message 3 From: Mom
Started the thread
End

September 17, 2002 Doc 6, Threads part 1 slide # 8

Second Method for Creating a Thread

First, have your class implement the Runnable interface, which has one method, run().
This run() plays the same role as the run() in the Thread subclass in the first method.
Second, create an instance of the Thread class, passing an instance of your class to
the constructor. Finally, send the thread object the start() method.

class SecondMethod implements Runnable {
public void run() {

for (int count = 0; count < 4; count++)
System.out.println("Message " + count + " From: Dad");

}

public static void main(String[] args) {
SecondMethod notAThread = new SecondMethod();
Thread parallel = new Thread(notAThread);

System.out.println("Create the thread");
parallel.start();
System.out.println("Started the thread");
System.out.println("End");

}
}

Output
Create the thread
Message 0 From: Dad
Message 1 From: Dad
Message 2 From: Dad
Message 3 From: Dad
Started the thread
End

September 17, 2002 Doc 6, Threads part 1 slide # 9

Giving a Thread a Name
We can give each thread a string id, which can be useful.

public class WithNames implements Runnable {
public void run() {

for (int count = 0; count < 2; count++)
System.out.println("Message " + count + " From: " +

Thread.currentThread().getName());
}

public static void main(String[] args) {
Thread a = new Thread(new WithNames(), "Mom");
Thread b = new Thread(new WithNames(), "Dad");

System.out.println("Create the thread");
a.start();
b.start();
System.out.println("End");

}
}

Output
Create the thread
Message 0 From: Mom
Message 1 From: Mom
Message 0 From: Dad
Message 1 From: Dad
End

September 17, 2002 Doc 6, Threads part 1 slide # 10

SimpleThread for Use in Future Examples

This class will be used in future examples.

public class SimpleThread extends Thread
{
private int maxCount = 32;

public SimpleThread(String name)
{
super(name);
}

public SimpleThread(String name, int repetitions)
{
super(name);
maxCount = repetitions;
}

public SimpleThread(int repetitions)
{
maxCount = repetitions;
}

public void run()
{
for (int count = 0; count < maxCount; count++)

{
System.out.println(count + " From: " + getName());
}

}
}

September 17, 2002 Doc 6, Threads part 1 slide # 11

Show Some Parallelism
In this example we show some actual parallelism. Note that the output from the different
threads is mixed.

public class RunSimpleThread
{
public static void main(String[] args)

{
SimpleThread first = new SimpleThread(5);
SimpleThread second = new SimpleThread(5);
first.start();
second.start();
System.out.println("End");
}

}
Output- On Rohan

End
0 From: Thread-0
1 From: Thread-0
2 From: Thread-0
0 From: Thread-1
1 From: Thread-1
2 From: Thread-1
3 From: Thread-0
3 From: Thread-1
4 From: Thread-0
4 From: Thread-1

September 17, 2002 Doc 6, Threads part 1 slide # 12

Multiple Processors
Java

Java on a Solaris machine with multiple processors can run threads on
different processors

If you run the last example on a single processor machine the results
may be completely different.

Smalltalk

VisualWorks claims to have some native thread support

I have not used this feature

September 17, 2002 Doc 6, Threads part 1 slide # 13

Showing Parallelism – Smalltalk

Transcript clear.
[10 timesRepeat:

[Transcript
show: 'A ';
cr]] fork.

[10 timesRepeat:
[Transcript

show: 'B ';
cr]] fork

Output

You get the 10 ‘A’s first then the 10 ‘B’s

What is going on?

September 17, 2002 Doc 6, Threads part 1 slide # 14

Thread Scheduling

• Priorities

• Timeslicing

September 17, 2002 Doc 6, Threads part 1 slide # 15

Priorities

Each thread has a priority

If there are two or more active threads

• If one has higher priority than others
• The higher priority thread is run until it is done or not active

Java Priorities
java.lang.Thread field Value
Thread.MAX_PRIORITY 10
Thread.NORM_PRIORITY 5
Thread.MIN_PRIORITY 1

Smalltalk Priorities
Priority ProcessScheduler

Methods
Purpose

100 timingPriority Processes that are dependent
on real time

98 highIOPriority Critical I/O processes, such as
network input handling

90 lowIOPriority Normal input/output activity,
such as keyboard input

70 userInterruptPriority High-priority user interaction;
such a process pre-empts
window management, so it
should be of limited duration

50 userSchedulingPriority Normal user interaction
30 userBackgroundPriority Background user processes
10 systemBackgroundPriority Background system processes
1 systemRockBottomPriority The lowest possible priority

September 17, 2002 Doc 6, Threads part 1 slide # 16

Setting Priorities

Continuously running parts of the program should have lower-
priority than rarer events

User input should have very high priority

A thread that continually updates some data is often set to run
at MIN_PRIORITY

September 17, 2002 Doc 6, Threads part 1 slide # 17

Java Examples

public class PriorityExample
{
public static void main(String[] args)

{
SimpleThread first = new SimpleThread(5);
SimpleThread second = new SimpleThread(5);
second.setPriority(8);
first.start();
second.start();
System.out.println("End");
}

}

Output
On Single Processor On Multiple Processor Rohan
0 From: Thread-5 End
1 From: Thread-5 0 From: Thread-3
2 From: Thread-5 1 From: Thread-3
3 From: Thread-5 2 From: Thread-3
4 From: Thread-5 0 From: Thread-2
0 From: Thread-4 3 From: Thread-3
1 From: Thread-4 1 From: Thread-2
2 From: Thread-4 2 From: Thread-2
3 From: Thread-4 4 From: Thread-3
4 From: Thread-4 3 From: Thread-2
End 4 From: Thread-2

September 17, 2002 Doc 6, Threads part 1 slide # 18

Smalltalk Priority Example

Transcript clear.
[10 timesRepeat:

[Transcript
show: 'A ';
cr]] forkAt: Processor userSchedulingPriority.

[10 timesRepeat:
[Transcript

show: 'B ';
cr]] forkAt: Processor userSchedulingPriority + 1

Output

First you get 10 ‘B’s then 10 ‘A’s

September 17, 2002 Doc 6, Threads part 1 slide # 19

Threads Run Once

When a Java or Smalltalk thread ends it can not be restarted

public class RunOnceExample extends Thread {
public void run() {

System.out.println("I ran");
}

public static void main(String args[]) throws Exception {
RunOnceExample onceOnly = new RunOnceExample();
onceOnly.setPriority(6);
onceOnly.start();

System.out.println("Try restart");
onceOnly.start();

System.out.println("The End");
}

}

Output
I ran
Try restart
The End

September 17, 2002 Doc 6, Threads part 1 slide # 20

Thread Scheduling
Time-slicing

Time-slicing
A thread is run for a short time slice and suspended,
It resumes only when it gets its next "turn"

Threads of the same priority share turns

Non time-sliced threads run until:
They end
They are terminated
They are interrupted

Higher priority threads interrupts lower priority threads
They go to sleep
They block on some call

Reading a socket
Waiting for another thread

They yield

Java

Does not specify if threads are time-sliced or not

Implementations are free to decide

VisualWorks

Threads are not timesliced

September 17, 2002 Doc 6, Threads part 1 slide # 21

Testing for Time-slicing & Parallelism

public class InfinityThread extends Thread
{
public void run()

{
while (true)

System.out.println("From: " + getName());
}

public static void main(String[] args)
{
InfinityThread first = new InfinityThread();
InfinityThread second = new InfinityThread();
first.start();
second.start();
}

}

Output if Time-sliced

A group of "From: Thread-a" will be followed by a group of
"From: Thread-b" etc.

Output if not Time-sliced, Single Processor

"From: Thread-a" will repeat "forever"

Multiple Processor
"From: Thread-a" and "From: Thread-b" will intermix "forever"

September 17, 2002 Doc 6, Threads part 1 slide # 22

 Java Types of Threads: user and daemon

We have seen several examples now of a program that continues to execute after its
main has finished. So, when does a Java program end? To answer this question we
need to know about the different types of threads. There are two types of threads: user
and daemon.

Daemon thread

Daemon threads are expendable. When all user threads are done, the program ends
all daemon threads are stopped

User thread

User threads are not expendable. They continue to execute until their run method
ends or an exception propagates beyond the run method.

When a thread is created, it is the same type of thread as its creator thread. The type a
thread can be changed before its start() method is called, but not after its start() method
has been called. See example on next slide. The main of your program is started in a
user thread.

The Java Virtual Machine continues to execute the program
until either of the following occurs:

• The exit method of class Runtime has been called and the
security manager has permitted the exit operation to take
place.

• All threads that are not daemon threads have died, either by
returning from the call to the run method or by throwing an
exception that propagates beyond the run method.

September 17, 2002 Doc 6, Threads part 1 slide # 23

Daemon example

The thread "shortLived" has the same priority as the thread running main. Hence on a
single processor machine, "shortLived" will not start until main ends or main uses up its
time-slice. Main is short enough to finish in one time-slice. However, since "shortLived"
is a daemon thread, it does not run after all the user threads are done. Hence,
"shortLived" never starts and does not print anything.

public class DaemonExample extends Thread
{
public static void main(String args[])

{
DaemonExample shortLived = new DaemonExample();
shortLived.setDaemon(true);
shortLived.start();
System.out.println("Bye");
}

public void run()
{
while (true)

{
System.out.println("From: " + getName());
System.out.flush();
}

}
}

Output
From: Thread-0 (Repeated many times)
Bye
From: Thread-0 (Repeated some more, then the program ends)

September 17, 2002 Doc 6, Threads part 1 slide # 24

Thread Control
Thread States

• Executing

Only one thread per processor can be running at a time

• Runnable

A thread is ready to run but is not currently running

• Not Runnable

A thread that is suspended or waiting for a resource

September 17, 2002 Doc 6, Threads part 1 slide # 25

Yield

Allow another thread of the same priority to run

public class YieldThread extends Thread {
public void run() {

for (int count = 0; count < 4; count++) {
System.out.println(count + " From: " + getName());
yield();

}
}

public static void main(String[] args) {

YieldThread first = new YieldThread();
YieldThread second = new YieldThread();

 first.setPriority(1);
 second.setPriority(1);

first.start();
second.start();
System.out.println("End");

}
}

Output (Explain this)
0 From: Thread-0
0 From: Thread-1
1 From: Thread-0
1 From: Thread-1
2 From: Thread-0
2 From: Thread-1
3 From: Thread-0
End
3 From: Thread-1

September 17, 2002 Doc 6, Threads part 1 slide # 26

Smalltalk Yield Example

[10 timesRepeat:
[Transcript

show: 'A ';
cr.

Processor activeProcess yield]]
fork.

[10 timesRepeat:
[Transcript

show: 'B ';
cr.

Processor activeProcess yield]]
fork

Output
A
B
A
B
A
B(the pattern repeats)

September 17, 2002 Doc 6, Threads part 1 slide # 27

Suspend & Resume
Smalltalk

suspend
Suspends a processs,
Raises an exception if processes is already suspended

suspendUnconditionally
Like suspend but can be sent to suspended process

resume
Resumes a suspended processs

| a |
Transcript clear.
a := [3 timesRepeat:

[Transcript
show: 'A ';
cr.

Processor activeProcess yield]] fork.
[a suspend.
4 timesRepeat:

[Transcript
show: 'B ';
cr.

Processor activeProcess yield].
a resume] fork

Output
A
B
B
B
B
A
A

September 17, 2002 Doc 6, Threads part 1 slide # 28

Suspend & Resume – Java

The following Thread methods are not thread safe

• suspend
• resume
• stop

These methods can leave your Java program in unstable states

You should not use them

September 17, 2002 Doc 6, Threads part 1 slide # 29

Killing a Thread
Smalltalk

terminate

kills a Smalltalk process

Example
| a |
Transcript clear.
a := [3 timesRepeat:

[Transcript
show: 'A ';
cr]] forkAt: Processor userSchedulingPriority - 5.

a terminate.
Transcript show: 'Killed a'.

Output
Killed a

September 17, 2002 Doc 6, Threads part 1 slide # 30

Killing a Thread - Java

stop
This Thread method is unsafe do not use it

destroy
This method does nothing. It was never implemented

There is no good way to really kill a Java thread

Later lectures will cover some suggestions for doing this

