
 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 1

CS 535 Object-Oriented Programming & Design
Fall Semester, 2003

Doc 2 Basic Smalltalk Syntax
Contents

Basic Smalltalk Syntax..2
The Rules ...3
Identifiers..7
Variables ..7
Messages ...8
Three type of Messages...9

Unary Messages ..10
Binary Messages..15
Keyword Messages..17

Precedence ..24
Cascading Messages ...28

References

Object-Oriented Design with Smalltalk — a Pure Object
Language and its Environment, Ducasse, University of Bern,
Lecture notes 2000/2001,
http://www.iam.unibe.ch/~ducasse/WebPages/Smalltalk/ST00
_01.pdf

Smalltalk Best Practice Patterns, Kent Beck, Prentice Hall,
1997

Copyright ©, All rights reserved.
2003 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700
USA. OpenContent (http://www.opencontent.org/opl.shtml) license defines the copyright
on this document.

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 2

Basic Smalltalk Syntax

The Xerox team spent 10 years developing Smalltalk

They thought carefully about the syntax of the language

Smalltalk syntax is

• Different from other languages

• Simple and compact

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 3

The Rules

• Everything in Smalltalk is an object

• All actions are done by sending a message to an object

• Every object is an instance of a class

• All classes have a parent class

• Object is the root class

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 4

Sample Program

"A Sample comment"

| a b |
a :='this is a string'. ":= is assignment"
a := 'this is '' a string that contains

a single quote and a newline'.

a := 'concat' , 'inate'.
a := 5.
a := 1 + "comments ignored" 1.

b := 2 raisedTo: 5.
^a + b "^ means return"

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 5

Multiple Assignments

Assignment statements return values!

| a b |
a := b := 3 + 4.

a and b now contain 7

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 6

Statement Separator

| cat dog |
cat := 5.
dog := cat + 2

A period is used as a statement separator

A period is optional after the last statement

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 7

Identifiers

An identifier (any name) in Smalltalk is of the form:

letter (letter | digit)*

Variables

| cat dog |
cat := 5.
dog := cat + 2.

Vertical bars at the top of a program declare variables

Variables must be declared

All variables are references to objects

Variables are initialized to nil

As we will see numbers in Smalltalk are objects. Internally references to objects
require pointers. Always using a pointer to refer to a number would slow arithemitic
operations. Most Smalltalk virtual machines will store numbers directly in a variable. At
the programming level one does not see any difference in how numbers and other
objects are handled.

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 8

Messages

Most languages place basic operations in the grammar

>, =, for (int k = 1; k < 10; k++)

In Smalltalk operations are defined as methods in a class

+ is a method in the Integer class

In 3 + 4, + is a message sent to the integer 3

Using messages rather than hard coded grammar makes

• Parsing code simpler

• Language extensible

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 9

Three type of Messages

• Binary

1 + 2
12 / 6

• Unary

12.3 printString
'123' asNumber

• Keyword

'Hi mom' copyFrom: 1 to: 3

All messages contain:

• Receiver
• Selector
• Zero or more arguments

Messages always return a value

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 10

Unary Messages

Format: aReceiver aSelector

'this is a string' reverse
'this is a string' is the receiver
reverse is the selector
returns 'gnirts a si siht'

Compared to C++ & Java

anObject->foo(); //C++

anObject.foo(); //Java

In Smalltalk white space separates receiver & message

anObject foo();

anObject foo();

Smalltalk does not use () for zero arguments

anObject foo "Smalltalk"

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 11

More Unary Examples

25 factorial
25 is the receiver
factorial is the selector
returns 15511210043330985984000000

'Cat in the hat' size

returns 14

12 printString

returns ‘12’ (a string)

‘20’ asNumber

returns 20 (an integer)

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 12

Remember the Rules

25 factorial

All receivers are objects

All objects are instances of a class

So

• 25 is an object

• There is Integer class

• You can add methods to the Integer class

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 13

Combining Unary Messages

Unary messages are executed from left to right

100 factorial printString size

is done as:

((100 factorial) printString) size

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 14

How about this?

100 factorial size

This will not work

100 factorial returns an integer

Integers do not implement a size method

Use the Smalltalk browser to see the methods in a class

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 15

Binary Messages

Format: aReceiver aSelector anArgument

2 + 4
2 is the receiver
+ is the selector
4 is the argument
returns 6

Binary selectors are

• Arithmetic, comparison and logical operations

• One or two characters taken from:

+ - / \ * ~ < > = @ % | & ! ? ,

Second character is never -

Using the above rules you can create your own binary messages in Smalltalk. You
can make @? a binary method in a class.

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 16

Combining Binary Messages

Binary messages are executed from left to right

1 + 2 * 3 * 4 + 5 * 6

is executed as

((((1 + 2) * 3) * 4) + 5) * 6

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 17

Keyword Messages

Format:
receiver keyword1: argument1 keyword2: argument2 …

12 min: 6
12 is the receiver
min: is a selector with only one keyword
6 is the argument
returns 6

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 18

One keyword message with two arguments

'this is a string'
copyFrom: 1
to: 7

'this is a string' is the receiver
copyFrom:to: is one selector with two keywords
1 and 7 are the arguments
returns 'this is'

Equivalent in Java/C++-like Syntax

'this is a string'.copy(1, 7);

'this is a string'->copy(1, 7);

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 19

One keyword message with four arguments

'this is a string'
findString: 'string'
startingAt: 4
ignoreCase: true
useWildcards: false

'this is a string' is the receiver
findString:startingAt:ignoreCase:useWildcards: is one selector
‘string’, 4, true, false are the arguments
returns (11 to: 16)

Equivalent in Java/C++-like Syntax

'this is a string'.find('string', 4, true, false);

'this is a string'->find('string', 4, true, false);

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 20

Keyword Messages verses Positional Argument Lists

Smalltalk Version

'this is a string'
findString: 'string'
startingAt: 4
ignoreCase: true
useWildcards: false

• Each keyword communicates role of argument

Positional Argument List Version

'this is a string'.findString('string', 4, true, false);

• More common so more familiar

• Easy for compiler to parse

• Easier for programmer to mix up parameters

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 21

Where do Keyword Messages End?

Unless you use parenthesis the compiler combines all
keywords in a statement into one message

'this is a string'
copyFrom: 1
to: 12 min: 7

The above has one message

copyFrom:to:min:

This message does not exist, so results in an error

'this is a string'
copyFrom: 1
to: (12 min: 7)

This message contains two legal keyword messages

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 22

Formatting Keyword Messages

'this is a string'
findString: 'string'
startingAt: 4
ignoreCase: true
useWildcards: false

or

'this is a string' findString: 'string' startingAt: 4 ignoreCase: true useWildcards: false

Beck’s Rule

When a keyword message has two or more keywords

• Place each keyword with its argument on its own line

• Indent the keyword one tab from the receiver

Program formatting is a matter of personal preference. Some Smalltalk style guides
state that keyword messages with two keywords should be placed on one line.
Whichever style one uses consistency is very important. Consistent style makes it
easier for others to read your code. When you work on a team, the entire team should
use the same style. Many companies have programming styles fro all programmers to
fallow.

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 23

The Tab Verses Spaces Debate

When one indents a line of code do you use:

• Tab

Easier to type

Sometimes tabs are different on screen and on hard copy

Some companies ban tabs

• Spaces

Smalltalk handles tabs uniformly

Use tabs to indent in Smalltalk

Do not use spaces to indent in Smalltalk

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 24

Precedence

• First unary messages are parsed left to right
• Binary messages are parsed left to right after unary

messages
• Keyword messages are parsed after binary messages

Parenthesis change the order of evaluation

Expression Result
3 + 4 * 2 14
3 + (4 * 2) 11
5 + 3 factorial 11
(5 + 3) factorial 40320
'12' asNumber + 2 14

Arithmetical operations do not use normal mathematical
precedence rules

Parenthesis must be used to separate multiple keyword
messages in one statement

'this is a string' reversed
findString: ('the cat is white' copyFrom: 9 to: 10)
startingAt: 1 + 2
caseSensitive: 2 + 2 = 4

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 25

Quiz

Identify the receivers, messages and the order of the
messages in the following:

cat cat cat: cat + cat cat: cat / cat

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 26

Transcript

Special output window
Similar in purpose to Java's System.out and C++'s out

Useful Transcript messages:

clear
clear the Transcript

show: aString
display aString in the Transcript

print: anObject
display a string representation of anObject in the Transcript

nextPutAll: aString
add aString to the display buffer

endEntry
put contents of display buffer in Transcript
empty the buffer

flush
Same as endEntry

tab cr space crtab crtab: anInteger
put given character in the display buffer

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 27

Sample Program
Transcript clear.
Transcript show: 'This is a test'.
Transcript cr.
Transcript show: 'Another line'.
Transcript tab.
Transcript print: 12.3.
Transcript cr.
Transcript show: 4 printString.
Transcript cr.
Transcript show: 'The end'.

Result of Running Program

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 28

Cascading Messages

Format:
receiver selector1 [arg] ; selector2 [arg] ; ...

A cascade sends multiple messages to the same receiver

Messages are sent from left to right to the same receiver

Transcript
clear;
show: 'This is a test';
cr;
show: 'Another line';
tab;
print: 12.3;
cr;
show: 4 printString;
cr;
show: 'The end'.

 9/2/03 Doc 2 Basic Smalltalk Syntax slide # 29

Cascade Versus Compound Messages

Expression Result
'hi mom' reverse asUppercase 'MOM IH'
'hi mom' reverse; asUppercase 'HI MOM'

Compound

In a compound message each message is sent to the result of
the previous message

'hi mom' reverse asUppercase

First send reverse to 'hi mom'

The result is 'mom ih'

Now send asUppercase to 'mom ih'

Cascade

In a cascade message each message is sent to the same
receiver

'hi mom' reverse; asUppercase

First send reverse to 'hi mom'

The result is not used

Now send asUppercase to 'hi mom'

