
10/14/03 Doc 12 Some OO Terms slide # 1

CS 535 Object-Oriented Programming & Design
Fall Semester, 2003

Doc 12 Some OO Terms
Some OO Terms ... 2

Abstraction.. 3
Encapsulation ... 5
Information Hiding... 6
Coupling.. 16
Cohesion... 16

Ralph Johnson’s Suggestions for Finding Abstractions........... 17
Polymorphism ... 25

Avoid Case Statements .. 27
Simplistic Example.. 28
Linked List Example.. 32

References

Ralph Johnson Lecture notes, Lecture 3 Data Abstraction and
Encapsulation, http://st-
www.cs.uiuc.edu/users/cs497/lectures.html

Object-Oriented Design Heuristics, Riel, Chapter 2

Copyright ©, All rights reserved. 2003 SDSU & Roger Whitney, 5500 Campanile Drive,
San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml)
license defines the copyright on this document.

10/14/03 Doc 12 Some OO Terms slide # 2

Some OO Terms

• Abstraction

• Encapsulation

• Information Hiding

• Coupling

• Cohesion

• Polymorphism

10/14/03 Doc 12 Some OO Terms slide # 3

Abstraction

“Extracting the essential details about an item or group of items,
while ignoring the unessential details.”

Edward Berard

“The process of identifying common patterns that have
systematic variations; an abstraction represents the common
pattern and provides a means for specifying which variation to
use.”

Richard Gabriel

Example

Pattern: Priority queue

Essential Details: length
items in queue
operations to add/remove/find item

Variation: link list vs. array implementation
stack, queue

10/14/03 Doc 12 Some OO Terms slide # 4

Heuristic 2.8

A class should capture one and only one key abstraction

Look at nouns in requirements specification or system
description

Look at these phrases. Some will be obvious classes, some will be obvious
nonsense, and some will fall between obvious and nonsense. Skip the nonsense,
keep the rest. The goal is a list of candidate objects. Some items in the list will be
eliminated, others will be added later. Finding good objects is a skill, like finding a
good functional decomposition.

A refrigerator has a motor, a temperature sensor, a light and a
door. The motor turns on and off primarily as prescribed by the
temperature sensor. However, the motor stops when the door
is opened. The motor restarts when the door is closed if the
temperature is too high. The light is turned on when the door
opens and is turned off when the door is closed.

10/14/03 Doc 12 Some OO Terms slide # 5

Encapsulation

Enclosing all parts of an abstraction within a container

Class contains

• Variables

• All the code that accesses the variables

Heuristic 2.9

Keep related data and behavior in one place

Code that uses a lot of accessing methods of an object should
be used to that object

(aPoint x squared + aPoint y squared) sqrt

verses

aPoint r

10/14/03 Doc 12 Some OO Terms slide # 6

Information Hiding

An object should hide design decisions from its users

Hide

• What is stored & what is computed

• Classes used

How does Point story its data?

How does OrderedCollection hold elements?

We use the classes without knowing

10/14/03 Doc 12 Some OO Terms slide # 7

Heuristic 2.1

All data should be hidden within it class

Smalltalk instance variables in can be accessed in:

• Instance methods of Class where they are defined

• Instance methods of subclasses of the Class where they are
defined

Most languages have a construct for global access to data

• Smalltalk has shared variables

• Use sparingly

• Use for constants

• What is a constant?

10/14/03 Doc 12 Some OO Terms slide # 8

Hiding Instance Variables

Some argue that only two methods should access an instance
variable

Class BankAccount
Instance variable: balance

balance
^balance

balance: aNumber
balance := anumber

deposit: aNumber
self balance: (self balance + aNumber)

This protects the class from changes in instance variables
• Change variable to computed result

Makes easy to enforce constraints

balance: aNumber
aNumber < 0 ifTrue: [NegativeBalanceError raiseSignal].
balance := aNumber

10/14/03 Doc 12 Some OO Terms slide # 9

Hiding Instance Variables & Refactoring Browser

Refactoring browser
• Lists all methods accessing an instance variable
• Change all accesses to be through access methods
• Removes all access through access methods

So don’t worry about hiding instance variables

If later you need to hide them it is easy to do

10/14/03 Doc 12 Some OO Terms slide # 10

Smalltalk and Private Methods

Private method

• Used for some internal computation
• Not to be called from outside of the class

All instance methods in Smalltalk are publicly accessible

Put private methods in “private” protocol

Smalltalk programmers know not to use such methods

10/14/03 Doc 12 Some OO Terms slide # 11

Engineering Heuristics, Absolutes & Beginners

All design decisions involve trade offs

Heuristics are design decisions that are nearly always true

No heuristic is correct all the time

Beginners violate heuristics because

• They don’t understand the trade offs involved

• Don’t know about alternatives

• Habit

10/14/03 Doc 12 Some OO Terms slide # 12

Two View of a Class: Inside & Outside

Users of a class care about

• Public methods

• English description

• Examples

• Tests

Users don’t need to know implementation details

To a user a class is a black box

10/14/03 Doc 12 Some OO Terms slide # 13

Inheritance (White Box) Verses Composition (Black Box)

Composition

Smalltalk defineClass: #ComposedWordSteam
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'input '
classInstanceVariableNames: ''
imports: ''
category: 'CS535'

Class Methods

on: aCollection
^self input: (ReadStream on: aCollection)

input: aStream
^super new setInput: aStream

Instance Methods

atEnd
^input atEnd

next
"some code to get the next word"
blah

peek
^input peek

setInput: aStream
input :=!aStream

10/14/03 Doc 12 Some OO Terms slide # 14

Inheritance

Smalltalk.Core defineClass: #WordStream
superclass: #{Core.ReadStream}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: ''
category: 'CS535'

next
"some code to get the next word"
blah

Changing next changes how peek works
But what if we don’t want peek changed?

10/14/03 Doc 12 Some OO Terms slide # 15

Inheritance (White Box) Verses Composition (Black Box)

Inheritance

Need to know how super class works

Hard to change super class

May inherit methods you don’t want

Can replace uses of super class (ReadStream) with new class
(WordStream)

Composition

Don’t need to know how composed object (ReadStream) works

Can change type of composed object

Controls which methods of composed object to expose

Forward messages to composed object

In languages that declare types may not be able to replace
composed object with new class (WordStream)

10/14/03 Doc 12 Some OO Terms slide # 16

Coupling

Strength of interaction between objects in system

How tangled together the classes are

Cohesion

Degree to which the tasks performed by a single module are
functionally related

10/14/03 Doc 12 Some OO Terms slide # 17

Ralph Johnson’s Suggestions for Finding Abstractions

• Do one thing
• Eliminate duplication
• Keep rate of change similar
• Decrease coupling, increase cohesion
• Minimize interfaces
• Minimize size of abstractions
• Minimize number of abstractions

10/14/03 Doc 12 Some OO Terms slide # 18

Do One Thing

Method should do on thing

• Method name should tell what it does

findString:startingAt:
asNumber
asUppercase
dropFinalVowels

Class should be what its name says

String
OrderedCollection
Array
ReadStream

Break complex classes/methods into simpler ones

10/14/03 Doc 12 Some OO Terms slide # 19

Eliminate Duplication

(self asInteger - $a asInteger + anInteger) \\ 26 – (self asInteger
- $a asInteger)

(self alphabetValue + anInteger) \\ 26 - self alphabetValue.

10/14/03 Doc 12 Some OO Terms slide # 20

Keep rate of change similar

• Separate initial conditions from algorithm’s temporary
variables

• Separate tax tables from employee data from time cards

10/14/03 Doc 12 Some OO Terms slide # 21

Minimize interfaces

Use the smallest interface you can

 Use Number instead of Float

Avoid embedding classes in names

 add: instead of addNumber:

Don’t check the class of an object

10/14/03 Doc 12 Some OO Terms slide # 22

Minimize size of abstractions

Methods should be small

• Median size is 3 lines
• 10 lines is starting to smell

Classes should be small

• 7 variables is starting to smell
• 40 methods is starting to smell

VW 7.0 Base System

Average Mean
Variables / class 2.1 1
Methods / class 16.7 9
Carriage returns/method 7.6 5.0

10/14/03 Doc 12 Some OO Terms slide # 23

Code used to generate Numbers

Variables Per Class

classes :=!Smalltalk allClasses reject: [:each | each isMeta]
variablesInClass :=!classes collect: [:each | each instVarNames size].
average :=!((variablesInClass fold: [:sum :each | sum + each])/

variablesInClass size) asFloat.
mean := variablesInClass asSortedCollection at: variablesInClass size // 2.
max := variablesInClass fold: [:partialMax :each | partialMax max: each]

Methods Per Class

classes :=!Smalltalk allClasses reject: [:each | each isMeta]
methodsInClass :=!classes collect: [:each | each selectors size].
average :=!((methodsInClass fold: [:sum :each | sum + each])/

methodsInClass size) asFloat.
mean := methodsInClass asSortedCollection at: methodsInClass size // 2.
max := methodsInClass fold: [:partialMax :each | partialMax max: each]

10/14/03 Doc 12 Some OO Terms slide # 24

Minimize number of abstractions

 A class hierarchy 6-7 levels deep is hard to learn

Break large system into subsystems, so people only have to learn
part of the system at a time

10/14/03 Doc 12 Some OO Terms slide # 25

Polymorphism

Objects with the same interface can be substituted for each
other at run-time

Variables take on many classes of object

Objects will behave according to their type

Code can work with any object that has the right set of methods

In C++ polymorphism requires
• Inheritance
• Pointers
• Virtual functions

In Java polymorphism requires
• Inheritance or
• Interfaces

In Smalltalk polymorphism does not require inheritance

10/14/03 Doc 12 Some OO Terms slide # 26

Example

Counter>>printOn: aStream
aStream

nextPutAll: ‘Counter(‘;
nextPutAll: count printString;
nextPutAll: ‘)’

aStream can be any object that implements nextPutAll:

Note we do not write:

Counter>>printOn: aStream
aStream class = FileStream ifTrue:[write to file].
aStream class = WriteStream ifTrue: [write to write stream]
aStream class = TextCollector ifTrue: [write to Transcript]

10/14/03 Doc 12 Some OO Terms slide # 27

Avoid Case Statements

Smalltalk has no case statement

OO programers send a message to object instead

Each type of object handles the message according to its type

Case statements make it harder to add new cases

10/14/03 Doc 12 Some OO Terms slide # 28

Simplistic Example

Bank offers various types of accounts:

• Checking
• Savings
• CD
• Junior savings accounts

Each type has different rules for processing a transaction

10/14/03 Doc 12 Some OO Terms slide # 29

Banking Classes

Customer

Transaction

Currency

Account (Abstract)

Checking Interest Account
(Abstract)

Savings CD Junior

10/14/03 Doc 12 Some OO Terms slide # 30

Processing a Transaction

Using Case Statment

newCustomer := Bank createNewAccount: type.

Etc.

newCustomer class = Checking ifTrue:[…]
newCustomer class = Savings ifTrue:[…]
newCustomer class = CD ifTrue:[…]
newCustomer class = Jonior ifTrue:[…]

10/14/03 Doc 12 Some OO Terms slide # 31

Polymorphism

newCustomer := Bank createNewAccount: type.
newCustomer.processTransaction: amount

Which processTransaction is called?

Adding new types of accounts to program requires:

Adding new subclasses

Changing code that creates objects

Avoid checking the class of an object

10/14/03 Doc 12 Some OO Terms slide # 32

Linked List Example

Note all the checking at in the methods

Smalltalk defineClass: #LinkedList
superclass: #{Core.SequenceableCollection}
indexedType: #none
private: false
instanceVariableNames: 'value next '
classInstanceVariableNames: ''
imports: ''
category: 'CS535'

Class Methods

with: anObject
^super new setValue: anObject

Instance Methods

addLast: anObject
next ifNotNil: [^next addLast: anObject].
next := LinkedList with: anObject.

includes: anObject
value = anObject ifTrue:[^true].
next ifNotNil: [^next includes: anObject].
^false

10/14/03 Doc 12 Some OO Terms slide # 33

printOn: aStream
aStream

print: value;
nextPutAll: ' '.

next ifNotNil: [next printOn: aStream]

setValue: anObject
value := anObject.

size
next ifNil: [^1].
^next size + 1

10/14/03 Doc 12 Some OO Terms slide # 34

LinkedList with Poymorphism

A node to represent the end of the list

Smalltalk defineClass: #NilNode
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: ''
category: 'CS535'

Instance Methods

addLast: anObject
self become: (LinkedList with: anObject)

includes: anObject
^false

printOn: aStream

size
^0

10/14/03 Doc 12 Some OO Terms slide # 35

LinkedList with NilNode

Smalltalk defineClass: #LinkedList
superclass: #{Core.SequenceableCollection}
indexedType: #none
private: false
instanceVariableNames: 'value next '
classInstanceVariableNames: ''
imports: ''
category: 'CS535'

Class Methods

with: anObject
^super new setValue: anObject

Instance Methods

addLast: anObject
next addLast: anObject

includes: anObject
value = anObject ifTrue:[^true].
^next includes: anObject

printOn: aStream
aStream

print: value;
nextPutAll: ' '.

next printOn: aStream

10/14/03 Doc 12 Some OO Terms slide # 36

setValue: anObject
value := anObject.
next := NilNode new.

size
^next size + 1

