5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 1

CS 535 Object-Oriented Programming & Design
Fall Semester, 2003
Doc 5 Some Types and Control Structures

Contents

SIMPIE BASIC TYPES ittt e e e e e e e e e e eeeana e e e e e e eeeeeannnnaeaeaeaeeeeees 2
= ToTo] (== o [P 2
] 2
N[T] =T P 3
11 (= To = TSRS 4
[0 = | P 5
FIXed-POINt NUMDEISot e e e e e e e e 7
= Lo (o o TP 8

(O o F= = To (= £ USSPt 11
CONIIOI IMESSATES ...t 13
P 13
BOOIean EXPreSSIONS.o 14
[Y] < PP 19
7= T o0 o Yo 1= P 24

References

VisualWorks Application Developer’'s Guide, doc/vwadg.pdf in the VisualWorks installation.
Chapter 3, 5, 16

Smalltalk Best Practice Patterns, Kent Beck, page 180

Reading

(DevGuide) Pages 96-97, 311-318 (Up to Dates), 107-109

Copyright ©, All rights reserved. 2003 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent
(http://www.opencontent.org/opl.shtml) license defines the copyright on this document.

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 2

Simple Basic Types
Boolean

true
Unique instance of True class

false
Unique instance of the False class

Smalltalk uses true and false for boolean values
Boolean operators (2 > 10) result in true or false

Integers (0, 1, etc) can not be used for boolean values
nil
Value of an uninitialized variable

Unique instance of the UndefinedObject class

5:47 PM 9/10/03

Integer
Float
Double
Fraction
Fixed-Point

Doc 5 Some Types and Control Structures, slide # 3

Numbers

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 4

Integer
Smalltalk supports Integers of arbitrary size
Available memory dictates integer range
- 536870912to 536870911(29 bits) are handled efficiently
Integers larger than 29 bits require multiple words
Literal Forms

1234
1234567890123456789012345678901234567890123456

With base <base>r<number>

Expression Value

16rFF 255
8r11 9
3r120 15
Examples
1+2

-123 abs

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 5

Float

Floating-point precision numbers
About 8 digits of accuracy
Range +10738

Literal forms

Expression Value
12.34 12.34
12.3e2 1230.0
3.14e-10 3.14e-10
Double

IEEE 64-bit floating-point numbers

About 14 or 15 digits of accuracy
Range +107307

In scientific notation use d instead of e

Expression Value

12.34d 12.34d

12.34d2 1234.0d

12.34 asDouble 12.340000152588d

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 6

Converting & Comparing Floating Point Numbers
Why does 12.34 asDouble result in 12.340000152588d?
12.34 is a decimal number

Most decimal numbers do not have exact binary
representations

If you want a double start as a double

Exact comparisons of floating point numbers are
dangerous

0.1 0.1 =0.01 is false

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 7

Fixed-Point Numbers
Contain a fixed number of decimal places
Calculations are done using specified precision

Examples

10s3
12.34s
12.34s5

s indicates this is a fixed-point number
The integer after s indicates number of decimal places
If no integer after the s, then use precision of the number

Expression Result
2.12s + 3.2s2 5.32s
2s3/3 0.667s
211s + 2.1s 4.21s
0.1s * 0.1s 0.0s

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 8

Fraction

Integer division results in a fraction

Expression Result
1/2 (1/2)
(1/2) + (1/3) (5/6)

(2r11/16rAA)* 2 (3/85)

Converting Fractions to Floats
Operations with floats convert fractions to floats

The asFloat message converts a fraction to a float

Expression Result
1/2 asFloat 0.5
(1/2) +1.5 2.0

(1.0/3) 0.3333333333333333

5:47 PM 9/10/03

Doc 5 Some Types and Control Structures, slide # 9

Converting Between Numbers

Important messages for any number

asDouble

asFoat

asFixedPoint: precision

aslnteger

asRational "convert to fraction’

Examples
Expression Result

(1/3) asDouble 0.33333333333333d
(1/3) asFloat 0.333333
(1/3) asFixedPoint: 3 0.333s
(1/3) asRational (1/3)
0.25 asRational (1/4)
0.37 asRational (284261/768273)
0.37s asRational (37/100)
0.37d asRational (37/100)
5 asFixedPoint: 3 5.000s
5.43 asinteger 3
5.43 asDouble 5.4299998283386d
5.432d asFixedPoint: 2 5.43s
5.437d asFixedPoint: 2 5.44s

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 10

Some Numerical Methods

Arithmetic
*+ -/ //'\\ abs negated quo: reciprocal rem:
Result
division 4/2 4/2
integer division S/12 2
modulo S\\2 1
-3 abs 3
5 negated -5
Rounding
4.2 ceiling 5
4.2 floor 4
3.1523 roundTo: 0.01 3.15
4.2 truncated 4
Testing
3.2 even false
-3 sign -1

odd, isZero, negative, positive, strictlyPositive

Others

arcCos, arcSin, arcTan, cos, exp,
floorLog:, In, log, log:, raisedTo:,
sin, sqrt, squared, tan

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 11

Characters

Various ways to reference a single character

| aChar |
aChar := $a.
aChar := $5.

aChar := Character tab.
aChar := Character value: 65.
aChar := 65 asCharacter.
aChar :='cat' at: 1. "indexing starts at 1"
Character class provides class methods for white space
characters

backspace cr del
esc space leftArrow
If del
tab newPag
e

Some Character Operations

asciiValue digitValue < =

> isDigit isLetter isLowercase
isSeparator isUppercase isVowel asCharacter
aslnteger asLowercase asSymbol asUppercase

$a isVowel returns true

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 12

What about Strings?

Smalltalk does have strings. Some important string methods use blocks. So we will
first cover blocks. We will get back to strings.

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 13

Control Messages
If

Format (4 versions)

(boolean expression) ifTrue: trueBlock

(boolean expression) ifFalse: falseBlock

(boolean expression) ifFalse: falseBlock ifTrue: trueBlock

(boolean expression) ifTrue: trueBlock ifFalse: falseBlock

Examples

difference := (X >y)
ifTrue: [X - y]
ifFalse: [y - x]

a < 1 ifTrue: [Transcript show: 'hi mom']

x sin < 0.5 ifTrue:
ly := X cos.
z:=y+12.

W :=Z COS]

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 14

Boolean Expressions
Logical Operations

Symbol Example
Or | alb
And & a&b
Exclusive OR XOr: a xor: (b > ¢)
Negation not (a<b)not

Lazy Logical Operations

Message Example
Or or: orBlock aor:[b>c]
And and: andBlock aand:[c|b]

The orBlock is evaluated only if the receiver of or: is false

The andBlock is evaluated only if the receiver of and: is true

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 15

Performance Note

To improve performance the compiler inlines some messages.

Since it does not make sense to send ifTrue: to anything but true and false, ifTrue:
and ifFalse: messages are inlined. So they look like messages and they seem to act
like messages, they do have the overhead of messages. One does not realize this
unless one tries to modify the ifTrue: ifFalse: methods in the True and False classes.
The changes would not have any effect.

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 16

Can | send ifTrue: to a non-Boolean?
Smalltalk compilers do not check for type usage
Type usage is check at runtime

If you send a message to an object that it does not implement
a runtime error results

So if you execute the following you get a runtime error not a
compile error:

5ifTrue: [1 + 3]

Type Checking & Binding Time

A number of people believe that large programs can not be written in languages
without typing, preferable strong type checking. They believe that without the compiler
checking type usage programmers will make too many type usage errors. This will
slow the development of programs and result in too many errors. Smalltalk is strongly
typed. It is just that types are checked at run time. Programmers using Smalltalk, Lisp,
Perl, APL, Python or Ruby (to name a few) tend to believe that type usage slows
program development. Mixing these two groups of people in newsgroups results in
many flame wars. These flame wars are a waste of emotional energy. Try Smalltalk
and see for yourself. You might find that for you type checking at compile time is very
important. If so then you know it by experience rather than repeating what you were
told in a course. You might find that you do just fine without compile time type
checking.

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 17

A Style Issue
Both of the following have the same effect

Which to use?

difference := (X >y)
ifTrue: [X - y]
ifFalse: [y - x]

(x>y)
ifTrue: [difference :=x - y]
ifFalse: [difference =y - x]

Smalltalkers use and prefer the first version'.

The main goal of the above statements is to assign a value to difference. The first
statement makes this clear. The second statement makes you work to see the both
paths of the computation assign a value to difference

! See Smalltalk Best Practice Patterns, Kent Beck, Conditional Expression Pattern, page 180.

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 18
isNil

isNil
Answers true if receiver is nil otherwise answers false

Common Usage

x 1sNil
ifTrue: [do something]
ifFalse: [do something else]

Shortcuts

1fNil:1fNotNil:
1fNotNil:1fNil:
1fNil:
1fNotNil:

ifNil: [do something]
ifNotNil: [do something else]

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 19

Blocks

» A deferred sequence of actions — a function without a name
e Can have 0 or more arguments
» Executed when sent the message 'value'

Similar to

* Lisp Lambda- Expression
e C function

* Anonymous functions

General Format

[:variablel :variable2 ... :variableN |
| blockTemporary1 blockTemporary?2 ... blockTemporaryK |
expressionl.
expression?2.

ooo]

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 20

Zero Argument Block

| block x |

X :=35.

block := [Transcript show: x printString].
x :=10.

block value

Prints 10 in the Transcript window

| block x |

X :=3.

block := [:argument | Transcript show: (x + argument) printString].
x = 10.

block value: 4

Prints 14 in the Transcript window

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 21

Blocks and Return Values

Blocks return the value of the last executed statement in the
block

| block x |

block :=[:a:b |
| c |
c:=a+b.
c + 5].

X := block value: 1 value: 2.

x has the value 8

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 22

Blocks and Arguments

2+ 3+4+ 5] value

x|Ix+3+4+5]value: 2

Xyl x+y+4+5] value: 2 value: 3

x:y:z|lx+y+z+ 5] value: 2 value: 3 value: 4
X:y:z:wlX+y+z+ w] value: 2 value: 3 value: 4 value: 5

|
|
|
|
|

Using the value: keyword message up to 4 arguments can be
sent to a block.

[(a:b:c:d:ela+b+c+d+e]valueWithArguments: #(1234 5)
[:a:bla+Db] valueWithArguments: #(12)

With the keyword message valueWithArguments: 1 or more
arguments can be sent to a block

The argument to valueWithArguments: must be an array
#(1 2 3) creates an array.

More on arrays soon.

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 23
Where is the Value Message?
In the message:
difference := (X >y)
ifTrue: [X - y]
ifFalse: [y - x]
where is value sent to the blocks?

In the False class we have;

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
Afalse AlternativeBlock value

In the True class we have:

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
AtrueAlternativeBlock value

The value message is send to the correct block in the True or
False class depending on the value of (x > y)

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 24

Basic Loops
Format

aBlockTest whileTrue

aBlockTest whileTrue: aBlockBody
aBlockTest whileFalse

aBlockTest whileFalse: aBlockBody

The last expression in aBlockTest must evaluate to a boolean

Examples

| X y difference |

X :=8.

y :=6.

difference := 0.

[x >y] whileTrue:
[difference := difference + 1.
y:=y+1].

Adifference

| count |

count := 0.

[count := count + 1.

count < 100] whileTrue.

Transcript clear; show: count printString

Note that with the whileTrue: message we can perform the loop check before we enter
the loop, like a while statement in C/C++/Java. The whileTrue message acts like the
do while statement in Java.

5:47 PM 9/10/03 Doc 5 Some Types and Control Structures, slide # 25

More Loops

Format
aninteger timesRepeat: aBodyBlock

startinteger to: endinteger do: blockWithArgument
start to: end by: increment do: blockWithArgument

Transcript
open,;
clear.
3 timesRepeat:
[Transcript
Cr;
show: '"Testing!'].

I to: 3 do:
[:nl
Transcript
Cr;
show: n printString;
tab;
show: n squared printString].

9 to: 1 by: -2 do:
[:nl
Transcript
Cr;
show: n printString].

