
CS 535 Object-Oriented Programming & Design
Fall Semester, 2008
Doc 16 VW GUI 2

Nov 6 2008
Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500 
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this 
document.



References

2

VisualWorks GUI Developer's Guide, GUIDevGuide.pdf in the docs directory of the VW distribution 



Issues with ButtonExample

3

Strings rather than numbers

Dealing with ValueHolders rather than with values

View code/logic in domain code

Well there really is no domain objects as the example is so simple, but the issue needs to be addressed.



Configuring the Widget for Numbers

4



Using Numbers in Button Example

5

ButtonExample>>count

 ^count isNil
  ifTrue:
   [count := 0 asValue]
  ifFalse:
   [count]

ButtonExample>>go
 
 self count value: (self count value  + 1) .
 Dialog warn: 'Hi'.
 ^self



Adapters

6



ButtonExample Adapter

7

ButtonExample>>countAdapter
 
 | countAdapter |
 countAdapter := AspectAdaptor subject: self.
 countAdapter
  forAspect: #count;
  subjectSendsUpdates: true.
 ^countAdapter

ButtonExample>>go
 
 count := count + 1.
 self changed: #count.
 Dialog warn: 'Time to go'.
 ^self

ButtonExample>>initialize
 
 count := 0

ButtonExample>>count: anInteger
 
 count := anInteger

ButtonExample>>count

 ^count

The text widget wants a ValueHolder, we want to have an integer. So we use an adapter that looks like a ValueHolder to the text 
widget. However when it needs to access the value it uses the count and count: methods.



Using a Number rather than a String

8



View & Domain Logic Mixed

9

ButtonExample
Simple example
Designed to show how to use a widget

 
It handles both view logic and domain logic



Simple Domain Class

10

Smalltalk defineClass: #Counter
 superclass: #{Core.Object}
 instanceVariableNames: 'count '

Counter class>>new
 ^super new initialize 

Counter>>count
 ^count

Counter>>count: anInteger
 count := anInteger

Counter>>increment
 self count: count + 1 

Counter>>initialize
 count := 0 



Using the Domain Object

11

Smalltalk defineClass: #ButtonExample
 superclass: #{UI.ApplicationModel}
 instanceVariableNames: 'count '

initialize
 count := Counter new

countAdapter
 | countAdapter |
 countAdapter := AspectAdaptor subject: count.
 countAdapter
  forAspect: #count;
  subjectSendsUpdates: true.
 ^countAdapter

go
 count increment.
 count changed: #count.
 Dialog warn: 'Time to go'.
 ^self



Issue - Who changes count?

12

ButtonExample class controls when count changes

ButtonExample can then inform window of changes
Keeps Counter class independent of GUI



Issue - Who changes count?

13

AnApplicationModel

What if other objects can change count?

ButtonExample will not be able to inform window of changes

When we have multiple domain objects a message to one may result in changes to one or more objects. If these objects 
contribute to the display it may not be possible for the application model to notify the view how to update itself correctly.



Domain Objects Updated

14

Smalltalk defineClass: #Counter
 superclass: #{Core.Object}
 instanceVariableNames: 'count '

Counter class>>new
 ^super new initialize 

Counter>>count
 ^count

Counter>>count: anInteger
 count := anInteger

Counter>>increment
 self count: count + 1.
   self changed: #count

Counter>>initialize
 count := 0 



ButtonExample Updated

15

Smalltalk defineClass: #ButtonExample
 superclass: #{UI.ApplicationModel}
 instanceVariableNames: 'count '

initialize
 count := Counter new

countAdapter
 | countAdapter |
 countAdapter := AspectAdaptor subject: count.
 countAdapter
  forAspect: #count;
  subjectSendsUpdates: true.
 ^countAdapter

go
 count increment.
 Dialog warn: 'Time to go'.
 ^self



Validating Input

16

ButtonExample>>validateNumber: aController
 | entry |
 entry := aController editValue.
 ^entry >= 0



Text Editor Example

17

Text Editor
widget



Text Editor Example

18

TextExample>>text
 ^text isNil
  ifTrue:
   [text := 'Hi Mom' asValue]
  ifFalse:
   [text]

TextExample>>add
 self text 

value: self text value , '\Add more text\' withCRs


