
CS 535 Object-Oriented Programming & Design
Fall Semester, 2008

Doc 10 More Testing, Abstraction & Polymorphism
Sept 29 2008

Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

References

2

Ralph Johnson Lecture notes, Lecture 3 Data Abstraction and
Encapsulation, http://st-www.cs.uiuc.edu/users/cs497/lectures.html

Object-Oriented Design Heuristics, Riel, Chapter 2

3

Testing

What to Test

4

Everything that could possibly break

Test values

 Inside valid range
 Outside valid range
 On the boundary between valid/invalid

GUIs are very hard to test
 Keep GUI layer very thin
 Unit test program behind the GUI, not the GUI

Common Things Programs Handle Incorrectly

5

Adapted with permission from “A Short Catalog of
Test Ideas” by Brian Marick

Any Object
nil pointer

Strings
Empty String

Collections
Empty Collection
Collection with one element
Collection with duplicate elements
Collections with maximum possible size

Numbers

Zero
The smallest number
Just below the smallest number
The largest number
Just above the largest number

Brian Marick paper can be found at http://www.exampler.com/testing-com/writings/short-catalog.pdf. See http://
www.exampler.com/testing-com/writings.html for more of his papers.

6

Abstraction
Information Hiding
Polymorphism

Information Hiding

7

An object should hide design decisions from its users

Hide

What is stored & what is computed

Classes used

How does Point story its data?

How does OrderedCollection hold elements?

Heuristic 2.1

8

All data should be hidden within it class

Smalltalk instance variables in can be accessed in:

Instance methods of Class where they are defined

Instance methods of subclasses of the Class where they are defined

Language Support for Global Data

9

Smalltalk has shared variables

Use sparingly

Use for constants

What is a constant?

Hiding Instance Variables

10

Some argue that only two methods should access an instance variable

Class BankAccount
Instance variable: balance

balance
 ^balance

balance: aNumber
 balance := anumber

deposit: aNumber
 self balance: (self balance + aNumber)

Why

11

This protects the class from changes in instance variables

Makes easy to enforce constraints

balance: aNumber
 aNumber < 0 ifTrue: [NegativeBalanceError raiseSignal].
 balance := aNumber

Hiding Instance Variables &Tools

12

Refactoring browser
Lists all methods accessing an instance variable
Change all accesses to be through access methods
Removes all access through access methods

So don’t worry about hiding instance variables

If later you need to hide them it is easy to do

Abstraction

13

“Extracting the essential details about an item or group of items,
while ignoring the unessential details.”
Edward Berard

“The process of identifying common patterns that have systematic
variations; an abstraction represents the common pattern and
provides a means for specifying which variation to use.”
Richard Gabriel

Pattern: Priority queue
Essential Details: length
 items in queue
 operations to add/remove/find item
Variation: link list vs. array implementation
 stack, queue

How to Find Abstractions

14

Look at nouns in requirements specification or system description

A refrigerator has a motor, a temperature sensor, a light and a
door. The motor turns on and off primarily as prescribed by the
temperature sensor. However, the motor stops when the door
is opened. The motor restarts when the door is closed if the
temperature is too high. The light is turned on when the door
opens and is turned off when the door is closed.

Look at these phrases. Some will be obvious classes, some will be obvious nonsense, and some will fall between obvious and
nonsense. Skip the nonsense, keep the rest. The goal is a list of candidate objects. Some items in the list will be eliminated,
others will be added later. Finding good objects is a skill, like finding a good functional decomposition

Ralph Johnson’s Suggestions for Finding
Abstractions

15

Do one thing
Eliminate duplication
Keep rate of change similar
Decrease coupling, increase cohesion
Minimize interfaces
Minimize size of abstractions
Minimize number of abstractions

Do One Thing

16

Methods should do one thing

Method's name should tell what it does

 findString:startingAt:
 asNumber
 asUppercase
 dropFinalVowels

Class should be what its name says

 String
 OrderedCollection
 Array
 ReadStream

Break complex classes/methods into simpler ones

Eliminate Duplication

17

(self asInteger - $a asInteger + anInteger) \\ 26 – (self asInteger - $a asInteger)

(self alphabetValue + anInteger) \\ 26 - self alphabetValue.

Keep rate of change similar

18

Separate tax tables from employee data from time cards

An object should not contain both
An instance variable that changes every second
An instance variable that changes once a month

Code that is different for each hardware platform
Code that is different for each OS

Minimize interfaces

19

Use the smallest interface you can

Use Number instead of Float

Avoid embedding classes in names

add: instead of addNumber:

Minimize the size of abstractions

20

Methods should be small

Median size is 3 lines
10 lines is starting to smell

Lots of Little Pieces

Average Median Max

Variables / class 2.1 1 72

Methods / class 16.6 8 359

LOC / method 3.0 2 156

VW 7.6

Classes should be small

7 variables is starting to smell
40 methods is starting to smell

Code used to generate Numbers

21

classes :=Smalltalk allClasses reject: [:each | each isMeta]
variablesInClass :=classes collect: [:each | each instVarNames size].
average :=((variablesInClass fold: [:sum :each | sum + each])/
 variablesInClass size) asFloat.
median := variablesInClass asSortedCollection at: variablesInClass size // 2.
max := variablesInClass fold: [:partialMax :each | partialMax max: each]

classes :=Smalltalk allClasses reject: [:each | each isMeta]
methodsInClass :=classes collect: [:each | each selectors size].
average :=((methodsInClass fold: [:sum :each | sum + each])/
 methodsInClass size) asFloat.
mean := methodsInClass asSortedCollection at: methodsInClass size // 2.
max := methodsInClass fold: [:partialMax :each | partialMax max: each]

Variables Per Class

Methods Per Class

Note how the above code could use the application of these ideas

LOC / Method

22

methodSizes := OrderedCollection new.
classes
 do: [:class |
 class selectors
 do: [:method |
 | periodCount |
 periodCount := (class compiledMethodAt: method) decompiledSource
 occurrencesOf: $..
 methodSizes add: periodCount + 1]].
average :=((methodSizes fold: [:sum :each | sum + each])/
 methodSizes size) asFloat.
median := methodSizes asSortedCollection at: methodSizes size // 2.
max := methodSizes fold: [:partialMax :each | partialMax max: each]

Minimize number of abstractions

23

A class hierarchy 6-7 levels deep is hard to learn

Break large system into subsystems, so people only
have to learn part of the system at a time

Polymorphism

24

Objects with the same interface can be substituted for each other at run-time

Variables take on many classes of object

Objects will behave according to their type

Code can work with any object that has the right set of methods

In C++ polymorphism requires
Inheritance
Pointers
Virtual functions

In Java polymorphism requires
 Inheritance or
 Interfaces

In Smalltalk polymorphism does not require inheritance

Simplistic Example

25

Bank offers various types of accounts:

Checking
Savings
CD
Junior savings accounts

Each type has different rules for processing a transaction

Account

Checking InterestAccount

Savings CD Junior

Processing a Transaction

26

Using Case Statement

ewCustomer := Bank createNewAccount: type.

Etc.

newCustomer class = Checking ifTrue:[...]
newCustomer class = Savings ifTrue:[...]
newCustomer class = CD ifTrue:[...]
newCustomer class = Junior ifTrue:[...]

 Using Polymorphism

27

newCustomer := Bank createNewAccount: type.
newCustomer.processTransaction: amount

Which processTransaction is called?

Adding new types of accounts to program requires:

Adding new subclasses
Changing code that creates objects

Avoid checking the class of an object

Avoid Case Statements

28

Smalltalk has no case statement

OO programers send a message to object instead

Each type of object handles the message according to its type

Case statements make it harder to add new cases

Linked List Example

29

A C F

Operations
Add elements
Test if list contains an element
printOn:
size

First Example

30

Smalltalk defineClass: #LinkedList
 superclass: #{Core.SequenceableCollection}
 instanceVariableNames: 'value next '

with: anObject
 ^super new setValue: anObject

Class Methods

addLast: anObject
 next ifNotNil: [^next addLast: anObject].
 next := LinkedList with: anObject.

includes: anObject
 value = anObject ifTrue:[^true].
 next ifNotNil: [^next includes: anObject].
 ^false

Instance Methods

printOn: aStream
 aStream
 print: value;
 nextPutAll: ' '.
 next ifNotNil: [next printOn: aStream]

setValue: anObject
 value := anObject.

size
 next ifNil: [^1].
 ^next size + 1

Instance Methods

Using Polymorphism

31

Use two types of nodes
LinkedList
NilNode

NilNode
Linked list terminator
Ends messages sent through list
List always ends with a nil node

A C F

NilNode

32

Smalltalk defineClass: #NilNode
 superclass: #{Core.Object}

Instance Methods
addLast: anObject
 self become: (LinkedList with: anObject)

includes: anObject
 ^false

printOn: aStream

size
 ^0

LinkedList with NilNode

33

Smalltalk defineClass: #LinkedList
 superclass: #{Core.SequenceableCollection}
 instanceVariableNames: 'value next '

Class Methods
with: anObject
 ^super new setValue: anObject

Instance Methods

printOn: aStream
 aStream
 print: value;
 nextPutAll: ' '.
 next printOn: aStream

setValue: anObject
 value := anObject.
 next := NilNode new.

size
 ^next size + 1

Instance Methods

addLast: anObject
 next addLast: anObject

includes: anObject
 value = anObject ifTrue:[^true].
 ^next includes: anObject

Example - size

34

A C F

size

Example - size

35

A C F

size

size
 ^next size + 1

size

Example - size

36

A C F

size

size
 ^next size + 1

size size

Example - size

37

A C F

size

size
 ^next size + 1

size size size size
 ^0

Example - size

38

A C F

size

size
 ^next size + 1

size size size size
 ^0 012

3

Example - addLast:

39

A F

addLast: $z

addLast: anObject
 next addLast: anObject

Example - addLast:

40

A F

addLast: $z

addLast: anObject
 next addLast: anObject

addLast: $z

Example - addLast:

41

A F

addLast: $z

addLast: anObject
 next addLast: anObject

addLast: $z addLast: $z

addLast: anObject
 self become: (LinkedList with: anObject)

Example - addLast:

42

A F

addLast: $z

addLast: anObject
 next addLast: anObject

addLast: $z addLast: $z

addLast: anObject
 self become: (LinkedList with: anObject)

Z

Example - addLast:

43

addLast: $z

addLast: anObject
 next addLast: anObject

addLast: $z addLast: $z

addLast: anObject
 self become: (LinkedList with: anObject)

A F

Z

become: is an unusual operation. After performing "a become: b" all references to a now refer to b and all references to b now
refer to a. That is a becomes b and visa-versa. A pointer from the nil node to F would have alleviated the need for using
become:. The goal of the entire NilNode example is to provide an example of how to replace case (if) statements with
polymorphism. The goal is to send messages to objects and have them do the right thing. The example is rather simplistic but
does illustrate the basic idea.

What is wrong here?

44

Transcript
 nextPut: $a;
 print: #($b $c $d) ;
 nextPutAll: 'cat';
 print: 5

