
CS 535 Object-Oriented Programming & Design
Fall Semester, 2008

Doc 18 Some Heuristics
Nov 25 2008

Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500 
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this 
document.



Reference

2

Object-Oriented Design Heuristics, Riel

Reading

Object-Oriented Design Heuristics, Riel
Chapters 2 & 3 this week
Chapter 4 - Dec 2-4
Chapter 5 - Dec 9-11



OO Program

3



Building Blocks

4

OrderedCollection
String
Dictionary
Characters
Streams
Trolls
etc.



"Main"

5

Adventure open

What does "main" in a program do? Think of a GUI application. Where is the main there?



Finding Building Blocks

6

Detailed scenarios

Step through the operations

Concrete abstractions easier to find



Cards are Useful

7



Building Block = Class

8

2.8 A class should capture one and only one key abstraction



Keep related data and behavior in one place

9

This is the most important idea in OO



Corollary 

10

To perform an operation send a message to the object that contains the data



Collections and Items

11

Class Potions
Instance variables

locations - OrderedCollection
numberOfUses - OrderedCollection 

verses

Class Potion
Instance variables

numberOfUses - Integer 



12

Spin off nonrelated information into another class

VagueClass

data

f1()

f2()
f3()

f4()

Data1

Class1

f1()

f2()

Data2

Class2

f3()

f4()



God Class

13

God object is an object that knows too much or does too much

Behavioral Form

Replaces the main
Does too much

Definition is from Wikipedia



Example

14

Room
Heat Flow 

Regulator
Furnace

getDesiredTemp

getActualTemp

Room
Heat Flow 

Regulator
Furnace

needHeat



Heuristics

15

Distribute system intelligence horizontally as uniform as possible

Do not create god classes/objects
Be very suspicous of a class whose name contains Driver, Manager, System

Beware of classes that have many accessor methods defined in there public 
interface

Beware of classes that have too much noncommunicating behavoir



Using GUIs

16

Model should not depend on the interface
The interface should depend on the model

So interface needa to access data in the model



Proliferation of Classes Problem

17

Eliminate irrelevant classes from your design

Do not turn an operation into a class



18

Should the cow send the milk the uncow yourself message?
Should the milk send the cow the unmilk yourself message?



Role of Agent Classes

19

During design time many agents are found to be irrelevant and should be removed


