
CS 535 Object-Oriented Programming & Design
Fall Semester, 2008

Doc 17 Some Parsing
Nov 20 2008

Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

References

2

Domain Specific Languages, http://en.wikipedia.org/wiki/Domain-
specific_programming_language

Example - Turtle Graphics

3

Turtle Graphics - used help teach programming

Program Turtle to
Move across screen
Draw patterns

Operations
move
turn
penUp
penDown

Sample Program

penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10

How to parse Turtle Program

4

As String

turtleProgram := 'penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10'.
lines := turtleProgram tokensBasedOn: Character cr.
aLine := lines first.
parts := aLine words

How to parse Turtle Program

5

Using Stream

turtleProgram := 'penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10'.

commandStream := ReadStream on: turtleProgram.
command := commandStream upto: Character cr.
token := commandStream upto: Character space

TurtleStream

6

Possible Operations

nextToken
nextCommand
commandArguments

Executing Turtle Program/Command

7

TurtleInterpreter class
Responsibilities

Analyze and execute turtle programs

Collaborations
Turtle
TurtleStream

Turtle class
Responsibilities

Draw on screen
Perform operations

TurtleInterpreter

8

Instance variables
turtle - instance of Turtle
source - instance of TurtleStream

TurtleInterpreter on: aProgramString
Initializes turtle and source

turtle := Turtle new.
source := TurtleStream on: aProgramString

TurtleInterpreter>>evaluate
[source atEnd]

whileFalse: [self evaluateCommand]

Simple Solution

9

TurtleInterpreter>>evaluateCommand
| command |
command := source nextToken.
command asLowercase = 'penUp'

ifTrue: [^self penUp].
command asLowercase = 'move'

ifTrue: [^self move].
etc.

TurtleInterpreter>>penUp
turtle penUp

TurtleInterpreter>>move
| distance |
distance := source nextToken.
turtle move: distance

Smalltalk Magic - perform

10

'CAT' perform: #asLowercase
'CAT' perform: 'asLowercase' asSymbol
'Cat dog' perform: #tokensBasedOn: with: Character space

'CAT' perform: 'asLowerase' asSymbol

Execute symbols or strings as methods

Dangerous Solution

11

TurtleInterpreter>>evaluateCommand
| command |
command := source nextToken.
self perform: command asSymbol

TurtleInterpreter>>penUp
turtle penUp

TurtleInterpreter>>move
| distance |
distance := source nextToken.
turtle move: distance

Some What Better Solution

12

TurtleInterpreter>>evaluateCommand
| command |
command := source nextToken.
(commandMap containsKey: command asLowercase)

ifTrue: [self perform: (commandMap at: command)]
ifFalse: [deal with bad command here]

TurtleInterpreter>>initialize
commandMap := Dictionary new.
commandMap

at: 'penup' put: #penUp;
at: 'move' put: #move;
etc.

Command Objects

13

Create a Command Class for each command in language

Command knows how to
Execute the command
Undo the command

Allows stepping through the program and undoing operations

MoveCommand

14

Smalltalk defineClass: #MoveCommand
 superclass: #{Core.Object}
 instanceVariableNames: 'turtle amount '

MoveCommand>>execute
 turtle move: amount

MoveCommand>>undo
 turtle
 left: 180;
 move: amount;
 left: 180

Parsing

15

TurtleInterpreter>>parse
[source atEnd]

whileFalse: [self parseCommand]

TurtleInterpreter>>parseCommand
| command |
command := source nextToken.
command asLowercase = 'penUp'

ifTrue: [^self penUp].
command asLowercase = 'move'

ifTrue: [^self move].
etc.

TurtleInterpreter>>penUp
commands

add: (PenUpCommand on: turtle).

TurtleInterpreter>>move
| distance |
distance := source nextToken.
commands

add: (MoveCommand turtle: turtle distance: distance)

Running

16

TurtleInterpreter>>run
commands do: [:each | each execute]

Build a Compiler

17

AT Parser Compiler
The parser compiler classes make it easier to write compilers in Smalltalk

SmaCC
Smalltalk Compiler-Compiler

More Smalltalk Magic - evaluate

18

Compiler evaluate: aString

Compiles and executes the Smalltalk code in aString

Compiler evaluate: ' 1 + 2'.

Compiler evaluate: 'Transcript show: (1 + 2) printString'

| userScript |
userScript := Dialog
 request: 'Write a Smalltalk expression'
 initialAnswer: '1 + 2'.
Compiler evaluate: userScript.

Evaluating Blocks

19

| script |
script := Compiler evaluate: '[1 + 2]'.
script value

Embedding code in a Block

| userScript compiledCode |
userScript := Dialog
 request: 'Write a Smalltalk expression'
 initialAnswer: '1 + 2'.
compiledCode := Compiler evaluate: '[' , userScript , ']'.
compiledCode value

There are problems

20

Compiler evaluate: '2;'

Compiler evaluate: 'bar + 3'

Obvious Solution

21

If the default action is not correct for your situation then

on:do: can be used to catch the errors

[Compiler evaluate: '2;']
 on: Notification
 do: [:error | error handling code]

[Compiler evaluate: 'foo + 2']
 on: Notification
 do: [:error | error handling code]

External Variables in the Script

22

Ways to provide scripts access to existing variables

Use block variables
Use evaluate:for:logged:

Using Blocks

23

| scriptString scriptBlockString scriptBlock |
scriptString := 'price > 10
 ifTrue:[''expensive'']
 ifFalse:[''cheap'']'.
scriptBlockString := '[:price | ' , scriptString , ']'.
scriptBlock := Compiler evaluate: scriptBlockString.
scriptBlock value: 12

In the string literal assigned to scriptString, contains code that is to have a string literal ('expensive'), the inner string literals
need to be quoted with two single quotes. If the script is not created from a string literal the double single quotes are not
needed.

evaluate:for:logged:

24

Evaluates code as if it were part of an object

Used primarily for tools like debugger

Violates information hiding should be avoided

Can be used to add methods to objects

25

Smalltalk.CS535 defineClass: #SampleClass
 superclass: #{Core.Object}
 instanceVariableNames: 'age '

SampleClass>>age: anInteger
 name := anInteger

Script

| dataObject |
dataObject := SampleClass new.
dataObject age: 10.
script := ' age + 5 '.
Compiler
 evaluate: script
 for: dataObject
 logged: false

Since the script is run as part of the object dataObject it can access instance variable 'age'
If the logged: parameter is true the execution of the code is recorded in the change file

Undefined Variables

26

Evaluate the following twice

Compiler evaluate: 'foobar'

The first time you will see in the transcript:

UndefinedObject #DoIt - foobar is undeclared

The second time this message will not appear.

What is going on?

27

When running code has an undefined variable it is stored in Undeclared.

So the second time foobar already exists
It exists in Undeclared.

Viewing Undeclared

28

Or execute:
Undeclared inspect

Removing Undeclared Variables

29

Or execute:
Undeclared purgeUnusedBindings

Back to Turtle

30

Sample Program

penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10

New Syntax

penDown
move: 5
turnLeft: 90
move: 10
turnLeft: 90
move: 5
turnLeft: 90
move: 10

| turtle |
turtle := Turtle new.
turtle

penDown;
move: 5;
turnLeft: 90;
move: 10;
turnLeft: 90;
move: 5;
turnLeft: 90;
move: 10

If we have control over
syntax create so we can
use compiler evaluate

Read the program, transform the
string into complete Smalltalk code
and use compiler evaluate:

Of course we could just require the user to enter the text on the right, which would make our job easier.

Domain-Specific language (DSL)

31

Language dedicated to a particular problem domain

Examples

UNIX shell scripts
ColdFusion Markup Language
FilterMeister

For writing Photoshop plugins

Some Advantages

32

Program written in words from the domain
Domain experts can understand, validate, modify, and write programs

Self-documenting code

Enhance quality, productivity, reliability, maintainability, portability and reusability

Domain-specific languages allow validation at the domain level

