
CS 535 Object-Oriented Programming & Design
Fall Semester, 2008

Doc 17 Some Parsing
Nov 20 2008

Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500 
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this 
document.



References

2

Domain Specific Languages, http://en.wikipedia.org/wiki/Domain-
specific_programming_language



Example - Turtle Graphics
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Turtle Graphics - used help teach programming

Program Turtle to 
Move across screen
Draw patterns

Operations
move
turn
penUp
penDown

Sample Program

penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10



How to parse Turtle Program
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As String

turtleProgram := 'penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10'.
lines := turtleProgram tokensBasedOn: Character cr.
aLine := lines first.
parts := aLine words



How to parse Turtle Program
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Using Stream

turtleProgram := 'penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10'.

commandStream := ReadStream on: turtleProgram.
command := commandStream upto: Character cr.
token := commandStream upto: Character space



TurtleStream
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Possible Operations

nextToken
nextCommand
commandArguments



Executing Turtle Program/Command
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TurtleInterpreter class
Responsibilities 

Analyze and execute turtle programs

Collaborations
Turtle 
TurtleStream

Turtle class
Responsibilities

Draw on screen
Perform operations



TurtleInterpreter
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Instance variables
turtle - instance of Turtle
source - instance of TurtleStream

TurtleInterpreter on: aProgramString
Initializes turtle and source

turtle := Turtle new.
source := TurtleStream on: aProgramString

TurtleInterpreter>>evaluate
[source atEnd]

whileFalse: [self evaluateCommand]



Simple Solution
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TurtleInterpreter>>evaluateCommand
| command |
command := source nextToken.
command asLowercase = 'penUp'

ifTrue: [^self penUp].
command asLowercase = 'move'

ifTrue: [^self move].
etc.

TurtleInterpreter>>penUp
turtle penUp

TurtleInterpreter>>move
| distance |
distance := source nextToken.
turtle move: distance



Smalltalk Magic - perform
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'CAT' perform: #asLowercase
'CAT' perform: 'asLowercase' asSymbol
'Cat dog' perform: #tokensBasedOn: with: Character space

'CAT' perform: 'asLowerase' asSymbol

Execute symbols or strings as methods



Dangerous Solution
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TurtleInterpreter>>evaluateCommand
| command |
command := source nextToken.
self perform: command asSymbol

TurtleInterpreter>>penUp
turtle penUp

TurtleInterpreter>>move
| distance |
distance := source nextToken.
turtle move: distance



Some What Better Solution
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TurtleInterpreter>>evaluateCommand
| command |
command := source nextToken.
(commandMap containsKey: command asLowercase)

ifTrue: [self perform: (commandMap at: command)]
ifFalse: [deal with bad command here]

TurtleInterpreter>>initialize
commandMap := Dictionary new.
commandMap 

at: 'penup' put: #penUp;
at: 'move' put: #move;
etc.



Command Objects
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Create a Command Class for each command in language

Command knows how to
Execute the command
Undo the command

Allows stepping through the program and undoing operations



MoveCommand
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Smalltalk defineClass: #MoveCommand
 superclass: #{Core.Object}
 instanceVariableNames: 'turtle amount '

MoveCommand>>execute
 turtle move: amount

MoveCommand>>undo
 turtle
  left: 180;
  move: amount;
  left: 180



Parsing
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TurtleInterpreter>>parse
[source atEnd]

whileFalse: [self parseCommand]

TurtleInterpreter>>parseCommand
| command |
command := source nextToken.
command asLowercase = 'penUp'

ifTrue: [^self penUp].
command asLowercase = 'move'

ifTrue: [^self move].
etc.

TurtleInterpreter>>penUp
commands 

add: (PenUpCommand on: turtle).

TurtleInterpreter>>move
| distance |
distance := source nextToken.
commands

add: (MoveCommand turtle: turtle distance: distance)



Running
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TurtleInterpreter>>run
commands do: [:each | each execute]



Build a Compiler
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AT Parser Compiler
The parser compiler classes make it easier to write compilers in Smalltalk

SmaCC
Smalltalk Compiler-Compiler



More Smalltalk Magic - evaluate
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Compiler evaluate: aString 

Compiles and executes the Smalltalk code in aString

Compiler evaluate: ' 1 + 2'.

Compiler evaluate: 'Transcript show: (1 + 2) printString'

| userScript |
userScript := Dialog 
               request: 'Write a Smalltalk expression' 
               initialAnswer: '1 + 2'.
Compiler evaluate: userScript.



Evaluating Blocks
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| script |
script := Compiler evaluate:  '[1 + 2]'.
script value

Embedding code in a Block

| userScript compiledCode |
userScript := Dialog 
               request: 'Write a Smalltalk expression' 
               initialAnswer: '1 + 2'.
compiledCode := Compiler evaluate: '[' , userScript , ']'.
compiledCode value



There are problems
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Compiler evaluate: '2;'

Compiler evaluate: 'bar + 3'



Obvious Solution
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If the default action is not correct for your situation then 

on:do: can be used to catch the errors 

[Compiler evaluate: '2;']
   on: Notification
   do: [:error | error handling code]

[Compiler evaluate: 'foo + 2']
   on: Notification
   do: [:error | error handling code]



External Variables in the Script
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Ways to provide scripts access to existing variables 

Use block variables
Use evaluate:for:logged:



Using Blocks
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| scriptString scriptBlockString scriptBlock |
scriptString := 'price > 10 
               ifTrue:[ ''expensive'']
               ifFalse:[ ''cheap'']'.
scriptBlockString := '[:price | ' , scriptString , ' ]'.
scriptBlock := Compiler evaluate: scriptBlockString.
scriptBlock value: 12

In the string literal assigned to scriptString, contains code that is to have a string literal ('expensive'), the inner string literals 
need to be quoted with two single quotes. If the script is not created from a string literal the double single quotes are not 
needed. 



evaluate:for:logged:
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Evaluates code as if it were part of an object 

Used primarily for tools like debugger 

Violates information hiding should be avoided 

Can be used to add methods to objects 
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Smalltalk.CS535 defineClass: #SampleClass
   superclass: #{Core.Object}
   instanceVariableNames: 'age '
 

SampleClass>>age: anInteger
   name := anInteger 

Script

| dataObject |
dataObject := SampleClass new.
dataObject age: 10.
script := ' age + 5 '.
Compiler
   evaluate: script
   for: dataObject
   logged: false

Since the script is run as part of the object dataObject it can access instance variable 'age' 
If the logged: parameter is true the execution of the code is recorded in the change file 



Undefined Variables
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Evaluate the following twice 

Compiler evaluate: 'foobar'

The first time you will see in the transcript: 

UndefinedObject #DoIt - foobar is undeclared

The second time this message will not appear. 



What is going on?
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When running code has an undefined variable it is stored in Undeclared. 

So the second time foobar already exists
It exists in Undeclared. 



Viewing Undeclared
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Or execute:
Undeclared inspect



Removing Undeclared Variables
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Or execute:
Undeclared purgeUnusedBindings



Back to Turtle
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Sample Program

penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10

New Syntax

penDown
move: 5
turnLeft: 90
move: 10
turnLeft: 90
move: 5
turnLeft: 90
move: 10

| turtle |
turtle := Turtle new.
turtle

penDown;
move: 5;
turnLeft: 90;
move: 10;
turnLeft: 90;
move: 5;
turnLeft: 90;
move: 10

If we have control over 
syntax create so we can
use compiler evaluate

Read the program, transform the 
string into complete Smalltalk code
and use compiler evaluate:

Of course we could just require the user to enter the text on the right, which would make our job easier.



Domain-Specific language (DSL)
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Language dedicated to a particular problem domain

Examples

UNIX shell scripts
ColdFusion Markup Language
FilterMeister

For writing Photoshop plugins



Some Advantages
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Program written in words from the domain
Domain experts can understand, validate, modify, and write programs

Self-documenting code

Enhance quality, productivity, reliability, maintainability, portability and reusability

Domain-specific languages allow validation at the domain level


