
CS 535 Object-Oriented Programming & Design
Fall Semester, 2008

Doc 5 Control Messages & Classes
Sept 11 2008

Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

References

2

Ralph Johnson's University of Illinois, Urbana-Champaign CS 497 lecture notes,
http://st-www.cs.uiuc.edu/users/cs497/

Smalltalk Best Practice Patterns, Beck

Smalltalk With Style, Klimas, Skublics, Thomas

Reading

Smalltalk by Example, Alex Sharp,
Chapter 2 Methods
Chapter 8 Control Structures

3

Control Messages

4

if
(boolean expression) ifTrue: trueBlock

(boolean expression) ifFalse: falseBlock

(boolean expression) ifFalse: falseBlock ifTrue: trueBlock

(boolean expression) ifTrue: trueBlock ifFalse: falseBlock

a < 1 ifTrue: [Transcript show: 'hi mom']

difference := (x > y)
 ifTrue: [x - y]
 ifFalse: [y - x]

Boolean Expressions

5

Symbol Example

Or | a | b

And & a & b

Exclusive or xor: a xor: (b > c)

Negation not (a< b) not

Message Example

Or or: aBlock a or: [b > c]

And and: aBlock a and: [c | b]

Lazy Logical Operations

This is not C

6

This is a runtime error

5 ifTrue: [1 + 3]

Of course you could just add the ifTrue: method to the Number class if you want to do the above.

A Style Issue

7

difference := (x > y)
 ifTrue: [x - y]
 ifFalse: [y - x]

(x > y)
 ifTrue: [difference := x - y]
 ifFalse: [difference := y - x]

Both do the same thing

The one on the left may seem strange. Other language do allow this. Some (many Smalltalkers) consider the one on the left to
better convey the intent of the code.

isNil

8

Answers true if receiver is nil otherwise answers false

x isNil
 ifTrue: [do something]
 ifFalse: [do something else]

ifNil:ifNotNil:
ifNotNil:ifNil:
ifNil:
ifNotNil:

x
 ifNil: [do something]
 ifNotNil: [do something else]

Shortcuts

Blocks

9

A deferred sequence of actions – a function without a name
Can have 0 or more arguments
Executed when sent the message 'value'

Similar to
Lisp's Lambda- Expression
Erlang's funs
Ruby's Blocks
Python's lambda
Anonymous functions

[:variable1 :variable2 ... :variableN |
 | blockTemporary1 blockTemporary2 ... blockTemporaryK |
 expression1.
 expression2.
 ...]

Blocks and Return Values

10

Blocks return the value of the last executed statement in the block

| block x |
block := [:a :b |
 | c |
 c := a + b.
 c + 5].
x := block value: 1 value: 2.

x has the value 8

Blocks know their Environment

11

| a b |
a := 1.
b := 2.
aBlock := [a + b].
result := aBlock value

result is now 3

| a b |
a := 1.
b := 2.
aBlock := [a + b].
a := 5
result := aBlock value

result is now 6

Blocks and Arguments

12

[2 + 3 + 4 + 5] value
[:x | x + 3 + 4 + 5] value: 2
[:x :y | x + y + 4 + 5] value: 2 value: 3
[:x :y :z | x + y + z + 5] value: 2 value: 3 value: 4
[:x :y :z :w | x + y + z + w] value: 2 value: 3 value: 4 value: 5

Using the value: keyword message up to 4 arguments can be sent to a block.

[:a :b :c :d :e | a + b + c + d + e] valueWithArguments: #(1 2 3 4 5)
[:a :b | a + b] valueWithArguments: #(1 2)

valueWithArguments: can be used with 1 or more arguments

Where is the Value Message

13

difference := (x > y)
 ifTrue: [x - y]
 ifFalse: [y - x]

In the False class we have:

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
^falseAlternativeBlock value

In the True class we have:

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
^trueAlternativeBlock value

This is an example of Polymorphism. More on this later.

While Loop

14

aBlockTest whileTrue
aBlockTest whileTrue: aBlockBody
aBlockTest whileFalse
aBlockTest whileFalse: aBlockBody

The last expression in aBlockTest must evaluate to a boolean

| x y difference |
x := 8.
y := 6.
difference := 0.
[x > y] whileTrue:
 [difference := difference + 1.
 y := y + 1].
^difference

| count |
count := 0.
[count := count + 1.
count < 100] whileTrue.
Transcript
 clear;
 show: count printString

More Loops

15

Transcript
 clear.
3 timesRepeat:
 [Transcript
 cr;
 show: 'Testing!'].
1 to: 3 do:
 [:n |
 Transcript
 cr;
 show: n printString;
 tab;
 show: n squared printString].
9 to: 1 by: -2 do:
 [:n |
 Transcript
 cr;
 show: n printString].

Testing!
Testing!
Testing!
1 1
2 4
3 9
9
7
5
3
1

Transcript

16

Classes

Objects & Classes - Smalltalk Language Details

17

Items to cover

Defining classes
Packages
Namespaces
Class names

Methods
 • Instance
 • Class

Variables
 • Instance variables
 • Class instance variables
 • Shared variables

Inheritance

self & super

The Rules

18

Everything in Smalltalk is an object

All actions are done by sending a message to an object

Every object is an instance of a class

All classes have a parent class

Object is the root class

How do you Define a Class?

19

The previous slide gives the answer but you may not believe it.

Defining Point Class

20

Smalltalk.Core defineClass: #Point
 superclass: #{Core.ArithmeticValue}
 indexedType: #none
 private: false
 instanceVariableNames: 'x y '
 classInstanceVariableNames: ''
 imports: ''
 category: 'Graphics-Geometry'

Using the rules we send a message to an object. In this case we sent a message to the Namespace object that the class belongs.
Some argue that we should sent a message to the classes parent (or super class). There are parts of the message that will not
make sense now. Don't worry one does not have to type message. The browser will do it for you.

Terms

21

Superclass

Package

Namespace

Class Names & Namespaces

22

Classes are defined in a namespace

Classes in different namespaces can use the same name

Full name of a class includes namespace

Root.Smalltalk.Core.Point

Use import to use shorter names

Workspace windows import all namespaces

Methods

23

All methods return a value

All methods are public

Placed a method in the "private" category to tell others to treat it as private

Instance methods

24

Sent to instances of Classes

1 + 2
'this is a string' reverse

Class Methods

25

Sent to Classes

Commonly used to create instances of the class

Array new
Point x: 1 y: 3
Float pi

Convention

26

ClassName>>methodName

String>>reverse

Point class>>x:y:

27

Naming Conventions

Class Names

28

Use complete words, no abbreviations

First character of each word is capitalized

SmallInteger
LimitedWriteStream
LinkedMessageSet

Simple Superclass Name

29

Simple words

One word preferred, two at maximum

Convey class purpose in the design

Number
Collection
Magnitude
Model

Qualified Subclass Name

30

Unique simple name that conveys class purpose
When name is commonly used

Array
Number
String

Prepend an adjective to superclass name
Subclass is conceptually a variation on the superclass

OrderedCollection
LargeInteger
CompositeCommand

Class Names and Implementation

31

Avoid names that imply anything about the implementation of a class

"A proper name that is stored as a String"

ProperName
ProperNameString

"A database for Problem Reports that uses a Dictionary"

ProblemReportDatabase
ProblemReportDictionary

"Not implemented with a Set, it is a specialized Set"

SortedSet

Examples from Smalltalk With Style, page 5

Method Names

32

Always begins with a lowercase first letter
Don't abbreviate method names
Use uppercase letters for each word after the first

Method Naming Guidelines

33

Choose method names so that statements containing the method read like a
sentence

FileDescpriptor seekTo: work from: self position

Use imperative verbs and phrases for methods which perform an action

Dog
sit;
lieDown;
playDead.

aFace lookSuprised
aFace surprised

Examples from Smalltalk With Style, page 10-11

Method Naming Guidelines

34

Use a phrase beginning with a verb (is, has) when a method returns a boolean

isString aPerson isHungry
aPerson hungry

Use common nouns for methods which answer a specific object

anAuctionBlock nextItem
anAuctionBlock item "which item"

From Smalltalk With Style, page 11-12

Method Naming Guidelines

35

Methods that get/set a variable should use the same name as the variable

books
^books

getBooks
^books

books: aCollection
books := aCollection

setBooks: aCollection
books := aCollection

From Smalltalk With Style, page 15-16

