
CS 535 Object-Oriented Programming & Design
Fall Semester, 2008

Doc 6 Inheritance & Variables
Sept 11 2008

Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

References

22

Ralph Johnson's University of Illinois, Urbana-Champaign CS 497 lecture notes,
http://st-www.cs.uiuc.edu/users/cs497/

Smalltalk Best Practice Patterns, Beck

Reading

Smalltalk by Example, Alex Sharp,
Chapter 4 Variables
Chapter 5 Instance Creation

Inheritance

3

Smalltalk supports only single inheritance

Each class has single parent class

A class inherits (or has) all
Methods defined in its parent class
Methods defined in its grandparent class
etc.
Methods defined in any ancestor class
Variables defined in any ancestor class

Terms

4

Parent Class
Superclass

Child class
Subclass

Object

5

Is the ancestor of all classes

Has no parent class

Contains important methods for all classes & objects

Inheritance and Name Clashes

6

Subclass can implement methods with same name as parent

This is called overloading the method

When message is sent to instance of the subclass, the subclass method is used

Subclass can not overload variable names

Actually you can force a subclass to overload a variable name. Nothing good comes from doing this.

Example

7

Parent

Child

Parent>>foo
^'foo'

Child>>foo
^'bar'

Result

| aParent aChild |

aParent := Parent new.

aChild := Child new.

aParent foo. 'foo'

aChild foo. 'bar'

Types of Variables

8

Temporary (Local) Variable
Named Instance Variable
Class Instance Variable
Shared Variable
Indexed Instance Variable

Temporary (Local) Variable

9

| a b sum |
a := 5.
b := 10.
sum := a + b.

Point>>grid: aPoint
 "Answer a new Point to the nearest rounded grid modules
 specified by aPoint."
 | newX newY |
 aPoint x = 0
 ifTrue: [newX := 0]
 ifFalse: [newX := x roundTo: aPoint x].
 aPoint y = 0
 ifTrue: [newY := 0]
 ifFalse: [newY := y roundTo: aPoint y].
 ^newX @ newY

Usage Convention

10

Do not use the same temporary variable name within a scope for more than
one purpose

| aRecord |
aRecord := self indexRecord.
aRecord lock: 12.
aRecord := aRecord at: 12.
self update: (aRecord at: 1) with: self newData.
aRecord unlock: 12.

From Smalltalk With Style, page 20. Reusing the variable here caused an error - unlocking the wrong record.

Named Instance Variable

11

Each object has its own copy of a named instance variable

Like
Protected C++ data member
Protected Java field

Accessible by
Instance methods of the class
Instance methods of subclasses of the class

Not accessible by
Methods in non-subclasses
Class methods

Example

12

Smalltalk defineClass: #ClassPoint
 superclass: #{Core.Object}
 indexedType: #none
 private: false
 instanceVariableNames: 'x y '
 classInstanceVariableNames: ''
 imports: ''
 category: ''

ClassPoint >>y: aNumber
 y := aNumber

ClassPoint >>x: aNumber
 x := aNumber

We now have two point objects. Each point object has a local copy of x and y. Values in the local copies are different.

Example

13

| a b |
a := ClassPoint new.
a
 x: 1;
 y: 4.
b := ClassPoint new.
b
 x: -1;
 y: 2.

x 1

y 4

a

x -1

y 2

b

We now have two point objects. Each point object has a local copy of x and y. Values in the local copies are different.

Adding Removing Instance Variables

14

Smalltalk defineClass: #ClassPoint
 superclass: #{Core.Object}
 indexedType: #none
 private: false
 instanceVariableNames: 'x y z w '
 classInstanceVariableNames: ''
 imports: ''
 category: ''

Method 1 Edit Class Definition

Adding/Removing Instance Variables

15

Method 2: Use Browser's Class menu

When removing instance variables using the menu option will check to see if you are still using the variable before removing it.

self & super

16

self
Refers to the receiver of the message (current object)

Methods referenced through self are found by:
Searching the class hierarchy starting with the class of receiver

super
Refers to the receiver of the message (current object)

Methods referenced through super are found by:
Searching the class hierarchy starting the superclass of the class
containing the method that references super

self and super Example

17

Parent>>name
 ^'Parent'

Child>>name
 ^'Child'

Child>>selfName
 ^self name

Child>>superName
 ^super name

GrandChild>>name
 ^'GrandChild'

Parent

Child

GrandChild

Code Output

| grandchild |

grandchild := Grandchild new.

Transcript

 show: grandchild name; Grandchild

 cr;

 show: grandchild selfName; Grandchild

 cr;

 show: grandchild superName; Parent

 cr;

How does this work

18

grandchild selfName

Receiver is grandchild object
Code in selfName method is ^self name
To find the method "self name" start search in Grandchild class

grandchild superName

Receiver is grandchild object
Code in superName method is ^super name
superName is implemented in Child class

To find the method "super name" start search in the superclass of Child

Why Super

19

Super is used when:

The child class overrides a method
Needs to call overridden method

Common Pattern

ClassPointSubclass>>initialize
super initialize.
z := 0.

Why doesn't super refer to parent class of the
receiver?

20

Parent>>name
 ^'Parent'

Child>>name
 ^super name , 'Child'

Parent

Child

GrandChild

| trouble |

trouble := Grandchild new.

Transcript

 show: grandchild name;

If super referred to the parent class of the receiver the above code would result in an infinite loop. The receiver is a GrandChild
object so the parent is Child. So in Child>>name "super name" would refer to Child>>name.

Class Methods

21

ClassPoint class>>origin
 ^self x: 0 y: 0

ClassPoint class>>x: xNumber y: yNumber
 ^(self new)
 x: xNumber;
 y: yNumber;
 yourself

ClassPoint class>>new
 ^super new initialize

center := ClassPoint origin.
center x
"Returns o"

new & initialize

22

ClassPoint>>initialize
 x := 0.
 y := 0.

ClassPoint class>>new
 ^super new initialize

SomeParentClass new initialize

ClassPoint new

SomeParentClass new returns a ClassPoint
object

aClassPointObject initialize

Initialization and Inheritance

23

Smalltalk.Core defineClass: #Parent
 superclass: #{Core.Object}
 instanceVariableNames: 'foo '

Class Method

new
 ^super new initialize

Instance Methods

initialize
 foo :=6.

foo
 ^foo

Initialization of Subclass

24

Smalltalk.Core defineClass: #Child
 superclass: #{Core.Parent}
 instanceVariableNames: 'bar '

How to initialize bar?

Bad Idea 1 – Use Same pattern

Child class>>new
 ^super new initialize

Child>>initialize
 bar := 2.

Child>>bar
 ^bar

Why bad?

25

Does not work!

| test |
test := Child new.
test foo “returns nil”

initialize is called twice

Child class>>new is not needed
Child class inherits an identical method

Bad Idea 2 – Subclass initializes Parent Variable

26

Child>>initialize
 bar := 2.
 foo := 6.

Why Bad?

Child class now involved in private affairs of the Parent

Changes to the Parent instance variables require changing Child

Solution

27

Child>>initialize
 super initialize
 bar := 2.

Child>>bar
 ^bar

Parent class>>new
 ^super new initialize

Parent>>initialize
 foo :=6.

Parent>>foo
 ^foo

Class Methods that Create Instances

28

Smalltalk does not have constructors like C++/Java

Use class methods to create instances

Place these class methods in "instance creation" category

Initial State of Instances

29

Create objects in some well-formed state

Class creation methods should:

Have parameters for initial values of instance variables or
Set default values for instance variables

Provide an instance method that:

Sets the initial values of instance variables
Place method in "initialize" or "initialize - release" category
Use the name setVariable1: value variable2: ...

Disabling new

30

Point new
 Does not work

Point x: 1 y: 12
This works

Point class>>new

 ^self shouldNotImplement

Implementers wanted users to specify initial value of a point

Actually the method is in the parent class of Point.

Class Instance Variables

31

A class has one instance of a class instance variable

Each subclass has a different instance

Accessible by
Class methods of the class
Class methods of subclasses

Example

32

Smalltalk.Core defineClass: #ClassInstanceVariableExample
 superclass: #{Core.Object}
 indexedType: #none
 private: false
 instanceVariableNames: ''
 classInstanceVariableNames: 'test '
 imports: ''
 category: 'As yet unclassified'

Adding/Removing Class Instance Variables

33

Edit the class definition directly

Method 1 Method 2

Example

34

Smalltalk.Core defineClass: #Parent
 superclass: #{Core.Object}
 classInstanceVariableNames: 'test '

Parent class>>test
 test isNil ifTrue:[test := 0].
 test := test + 1.
 ^test

Smalltalk.Core defineClass: #Child
 superclass: #{Core.Parent}
 classInstanceVariableNames: ''

Transcript

 print: Parent test; 1

 cr;

 print: Parent test; 2

 cr;

 print: Child test; 1

 flush

Lazy Initialization

35

Parent class>>test
 test isNil ifTrue:[test := 0].
 test := test + 1.
 ^test

Indexed Instance Variable

36

Provides slots in objects for array like indexing

Used for Arrays

I have never added indexed instance variables

I have always used existing collection classes

