
CS 535 Object-Oriented Programming & Design
Fall Semester, 2008

Doc 7 Polymorphism, Object, Testing
Sept 17 2008

Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

References

2

Object-Oriented Design Heuristics, p 98

Polymorphism

3

Parent

Child

GrandChild

Parent>>name
 ^'Parent'

Parent>>age
^50

Parent>>total
^self name size + self age

Child>>name
 ^'Child'

Child>>age
 ^super age - 15

GrandChild>>name
 ^'GrandChild'

GrandChild>>age
^super age - 18

Which method is called

aPerson := ??? new.

aPerson name

aPerson age

aPerson total

when ??? is
Parent
Child
GrandChild

Template Method

4

Parent>>total
^self name size + self age

Parent method (total) defines algorithm using methods

Subclasses implement those methods

Object

5

All 'things' in Smalltalk are objects

Objects are created from classes

The class Object is the parent class of all classes

Object class contains common methods (270) for all objects

Determines behavior for all objects

printString

6

Returns a string representation of the receiver
Similar to toString in Java

5 printString '5'

$a printString '$a "16r0061"'

#(1 2 3) printString '#(1 2 3)'

a:= ClassPoint new.
a printString 'a ClassPoint'

Implementing printString for ClassPoint

7

ClassPoint>>printOn: aStream
 aStream
 nextPut: $(;
 print: x ;
 nextPut: $,;
 space;
 print: y;
 nextPut: $).

a:= ClassPoint new.
a
 x: 4;
 y: -1.
a printString

 '(4, -1)'

Where is printStream?

Object uses Template Method

8

Object>>printString
 "Answer a String whose characters are a description of the receiver."

 | aStream |
 aStream := WriteStream on: (String new: 16).
 self printOn: aStream.
 ^aStream contents

printString is a template method
You just implement printOn: and printString will work

Remember "do it once and only once"? Template method is one way of achieving that. Since the standard way of creating a string
representation is to create a WriteStream (don't worry about what that is), write to the stream and then return the contents of the
stream we put the common code in Object and just implement the part specific to our class. We could implement the entire logic
in each class, but that would not be "do it once and only once".

Useful WriteStream methods

9

nextPutAll: aString
nextPut: aCharacter
print: anObject
cr
space
tab
crtab

ClassPoint>>printOn: aStream
 aStream
 nextPut: $(;
 print: x ;
 nextPut: $,;
 space;
 print: y;
 nextPut: $).

isInteger

10

'cat' isInteger false

$5 isInteger false

4 isInteger true

4.5 isInteger false

Object>>isInteger

 ^false

Integer>>isInteger

 ^true

Replace case (if) with Polymorphism

11

Object>>isInteger
^self class = Integer verses

Object>>isInteger

 ^false

Integer>>isInteger

 ^true

Polymorphism makes change easier

12

What if we add a new type of Integer?

Object>>isInteger
self class = Integer

ifTrue: [^true].
self class = CS535Integer

ifTrue: [^true].
^false

verses
Object>>isInteger

 ^false

Integer>>isInteger

 ^true

CS535Integer>>isInteger

 ^true

When we add a new type of Integer class we just have to make sure it returns the correct result. We do not have to find and
change all the if or case statements that check to see if something is an integer.

Avoid checking the type of an Object

13

Heuristic 5.12
Explicit case analysis on the type of an object is usually an error.
The designer should use polymorphism in most of these cases

anObject isInteger
ifTrue: [Transcript show: anObject printString].

anObject isString
ifTrue: [Transcript show: anObject].

anObject isArray
ifTrue: [anObject do: [:element | Transcript show: element].

Transcript show: anObject printString

verses

Equality

14

All objects are allocated on the heap
Variables are references (like a pointer) to objects

A == B
Returns true if the two variables point to the same location

A = B
Returns true if the two variables point to equivalent objects

In Smalltalk you want to use '=' nearly all the time

A ~= B
Means (A = B) not

A ~~ B
Means (A == B) not

Defining =

15

If you define = also define hash

ClassPoint>>= anObject
 anObject isPoint ifFalse:[^false].
 ^self x = anObject x and: [self y = anObject y]

ClassPoint>>hash

 ^x hash hashMultiply bitXor: y hash

16

Testing

Johnson's Law

17

If it is not tested it does not work

Types of tests

18

Unit Tests

Tests individual code segments

Functional Tests

Test functionality of an application

Why Unit Testing

19

The more time between coding and testing

More effort is needed to write tests
More effort is needed to find bugs
Fewer bugs are found
Time is wasted working with buggy code
Development time increases
Quality decreases

Without unit tests

Code integration is a nightmare
Changing code is a nightmare

Unit Tests Must be Easy To Run

20

Must be able to

Easily run many tests at once
Allow others to run the tests
Keep the tests for later
Scale with more developer and project size

Test stored in a workspace

Do not work in any sizable project
Do not work well with multiple programmers
Are easily lost
Are not run very often

Testing First

21

First write the tests

Then write the code to be tested

Writing tests first:

Removes temptation to skip tests

Makes you define of the interface & functionality of the code before

SUnit

22

Testing framework for automating running of unit tests in Smalltalk

In SUnit

Programmer manually writes the test
SUnit automates the running of the test
Simplifies finding tests that fail

Ports to other languages can be found at:
http://www.xProgramming.com/software.htm

Three GUI Interfaces for viewing Test Results

23

TestRunner
Already loaded in Image

Browser SUnit Extensions
 Easier to run individual tests
 Needs to be loaded

SUnitToo
Auotmates more actions

Loading SUnitToo

24

Step 1 Step 2

In Launcher window

Website has a screencast
of loading and using SUnitToo

Sample Test Case

25

ClassPointTest>>testX

 | aPoint |
 aPoint := ClassPoint new.
 self
 assert: aPoint x = 0;
 assert: aPoint y = 0.
 aPoint x: 5.
 self assert: aPoint x = 5.
 self deny: aPoint x = 10.

ClassPointTest is subclass of SUnit.TestCase
Framework runs methods whose name start with test

This is a silly test. We don't need to test an setter method. But this is just an example of a test method.

Important Methods of TestCase

26

assert: aBooleanExpression
deny: aBooleanExpression
should: [aBooleanExpression]
should: [aBooleanExpression] raise: AnExceptionClass
shouldnt: [aBooleanExpression]
shouldnt: [aBooleanExpression] raise: AnExceptionClass
signalFailure: aString

Another Example

27

testZeroDivide
 self
 should: [1/0]
 raise: ZeroDivide.

 self
 shouldnt: [1/2]
 raise: ZeroDivide

 self should: [2 = 1 + 1]

setUp & tearDown

28

setUp
Called before running each test method

tearDown
Called after running each test method

Used to set up and tear down items for tests
files
database connections
objects needed for test methods

Example

29

ClassPointTest>>testLarge
 self assert: largePoint x = 100.
 largePoint x: 10.
 self assert: largePoint x = 10.

ClassPointTest>>setUp

 largePoint := ClassPoint new.
 largePoint
 x: 100;
 y: 100

