
CS 535 Object-Oriented Programming & Design
Fall Semester, 2011

Doc 11 Abstract Classes & Abstractions
Oct 11 2011

Copyright ©, All rights reserved. 2011 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, September 27, 2011

References

2

Object-Oriented Design Heuristics, Riel

Ralph Johnson Lecture notes, Lecture 3 Data Abstraction and Encapsulation, http://st-
www.cs.uiuc.edu/users/cs497/lectures.html

Tuesday, September 27, 2011

Inheritance

3

What should I use as a super class?

A has a B
Indicates that an instance variable of A is an instance of B

A is a B
A is a type of B

Indicates that A is a subclass of B

A car has an engine, so car object contains an engine object

A BinarySearchTree has nodes, so it has instance variables left and right

A WordStream is a type of ReadStream so it is a subclass of ReadStream

Tuesday, September 27, 2011

Common Mistakes

4

Engine

Car Engine

Car

Using has-a relation for inheritance “I need access to engine methods
 in the car class and now I have it.”

Tuesday, September 27, 2011

Roles Verses Classes

5

2.11 Be sure the abstractions you model are classes and not simply the roles objects play

Person

Mother ChildFather

mother := Mother new.
father := Father new

mother := Person new.
father := Person new.

Person

Tuesday, September 27, 2011

Abstract Classes

6

Abstract class
A class that can not be instantiated

Concrete class
A class that can be instantiated

Why Abstract Classes

Define an abstraction
Define a type
Define interface for subclasses
Define methods for subclasses

Hide the existence of concrete subclasses

Tuesday, September 27, 2011

Abstract Class

7

Is not the same as an abstraction

Tuesday, September 27, 2011

Smalltalk Collections

8

Italic - Abstract Class
Bold - Concrete class

Object

Collection

Bag SequenceableCollection Set

ArrayCollection Interval OrderedCollection Dictionary

Array CharacterArray SortedCollection

String Text

Symbol

Tuesday, September 27, 2011

Collection Class

9

No instance variables

60 methods

Three abstract methods
add:
remove:ifAbsent:
do:

Use three abstract methods to implement other 57 methods

detect: aBlock ifNone: exceptionBlock
 "Evaluate aBlock with each of the receiver's elements as the argument.
 Answer the first element for which aBlock evaluates to true."

 self do: [:each | (aBlock value: each) ifTrue: [^each]].
 ^exceptionBlock value

Tuesday, September 27, 2011

Defining Abstract Classes

10

public abstract class NoObjects {
 public void aFunction() {
 System.out.println("Hi Mom");
 }
 public abstract void subClassMustImplement(int foo);
}

Some languages have special syntax

Tuesday, September 27, 2011

Defining Abstract Classes - Smalltalk

11

Mark methods as abstract with “self subclassResponsibility”

 Collection>>do: aBlock
 self subclassResponsibility

Indicate class is abstract in class comment

Include list of abstract methods

Browser will create methods stubs in subclass

Tuesday, September 27, 2011

What does self subclassResponsibility do?

12

Informs reader
Method is abstract
Concrete subclasses need to implement the method

Raises an exception when executed to indicate
Subclass did not implement an abstract method
Created an instance of an abstract class

Informs browser which methods subclasses need to implement

Tuesday, September 27, 2011

How to Prohibit Instances of Abstract Class

13

Documentation is normally enough

Implement new so it throws an exception

Stream class>>new
 "Provide an error notification that Streams are not created
 using this message."
 self error: ('Streams are created with on: and with:')

Tuesday, September 27, 2011

How do subclass objects get created?

14

Stream class>>new
 self error: ('Streams are created with on: and with:')

PositionableStream class>>on: aCollection
 ^super new on: aCollection

Stream

PositionableStream

What happens when this is done?

PositionableStream on: String new

Tuesday, September 27, 2011

How do subclass objects get created?

15

Use basicNew

PositionableStream class>>on: aCollection
 ^self basicNew on: aCollection

basicNew
Does the same thing as new
Is used to get around super class’s new method
Only used in class instance creation methods
Never implement basicNew

Tuesday, September 27, 2011

Abstract Classes and Data

16

Abstract classes commonly do not have instance variables

How can they implement methods?

Identify a core set of abstract operations

Implement other methods using core methods

Tuesday, September 27, 2011

Collection Class

17

No instance variables

60 methods

Three abstract methods
add:
remove:ifAbsent:
do:

Use three abstract methods to implement other 57 methods

detect: aBlock ifNone: exceptionBlock
 "Evaluate aBlock with each of the receiver's elements as the argument.
 Answer the first element for which aBlock evaluates to true."

 self do: [:each | (aBlock value: each) ifTrue: [^each]].
 ^exceptionBlock value

Tuesday, September 27, 2011

Abstract Classes, Types and Hinges

18

Declaring a variable to be an Abstract class instance

Indicates which operations are allowed on the variable

Allows any subclass to be used in the variable

Provides flexibility particularly in languages with static type checking

SomeClass>>foo: aCollection
 ^aCollection fold: [:a :b | a max: b].

public class SomeClass {
 public int foo(Collection a) { blah}
}

public class Resticted {
 public int foo(Array a) { blah}
}

Tuesday, September 27, 2011

Abstract Classes and Hiding Subclasses

19

Smalltalk VM on startup informs Filename of the correct
concrete class for the current platform

file := 'foo' asFilename.
file class "MacOSXFilename (on my machine)"

Filename

MacFilename PCFilename UnixFilename

MacOSXFilename

NTFSFilenameHPFSFilenameFATFilename

MacOSFilename

Tuesday, September 27, 2011

How it works

20

Filename Class>>defaultClass: cls
 "Assign the appropriate concrete subclass for this platform.
 Only done at start-up."

 DefaultClass := cls

Filename Class>>named: str
 str isEmpty
 ifTrue: [OSErrorHolder invalidArgumentsSignal raiseWith: str].
 ^self concreteClass createInstanceNamed: str

Filename Class>>concreteClass
 self == Filename ifTrue: [^self defaultClass].
 ^self

String>>asFilename
 ^Filename named: self string

Filename Class>>defaultClass
 ^DefaultClass

file := 'foo' asFilename.

Tuesday, September 27, 2011

Platform Independence Aside

21

Mac, PC and Unix have different end of line characters

When you read a file:
Smalltalk converts the platform’s end of line character to cr

When you write a file
Smalltalk converts cr to the platform’s end of line character

Same code
Works on all three platforms
Produces files with the correct end of line character

Tuesday, September 27, 2011

Hide the existence of concrete subclasses

22

String

ByteEncodedString

ByteString ISO8859L1String

TwoByteString

String is an abstract class

String new
Does not create a string object
Creates an instance of a subclass
Appears to create a String object

String subclasses
Don’t add new methods
Provide specific implementations

Tuesday, September 27, 2011

Strings Continued

23

| a |
a :=String new.
a class. "returns ByteString"

| b |
b :=(String with: (Character value: 3585)) "3585 is a Thai character".
b class "returns TwoByteString"

| c |
c := String with: $a.
c class. “returns ByteString”
c at: 1 put: (3585 asCharacter).
c class “returns TwoByteString”

Tuesday, September 27, 2011

To learn about character encodings read: http://www.joelonsoftware.com/articles/Unicode.html

become: Smalltalk Magic

24

| c |
c := String with: $a.
c class. “returns ByteString”
c at: 1 put: (Character value: 3585).
c class “returns TwoByteString”

How did c change class?

a become: b

Change all references to ‘a’ to reference ‘b’

Change all references to ‘b’ to reference ‘a’

‘a’ basically becomes ‘b’ and ‘b’ becomes ‘a’

Tuesday, September 27, 2011

String ClassTransformation without become?

25

Use composition

String has instance variable that holds real string

String forwards messages to the real string

String can replace the real string with a different object

Tuesday, September 27, 2011

Sample Implementation

26

Smalltalk.Core defineClass: #String
 superclass: #{Core.CharacterArray}
 instanceVariableNames: 'realString'

size
 ^realString size

at: anInteger
 ^realString at: anInteger

at: anInteger put: aCharacter
 aCharacter value > 256
 ifTrue: [realString := realString asTwoByteString].
 realString at: anInteger put: aCharacter.

Tuesday, September 27, 2011

27

Abstraction
Information Hiding
Polymorphism

Tuesday, September 27, 2011

Information Hiding

28

An object should hide design decisions from its users

Hide

What is stored & what is computed

Classes used

How does Point story its data?

How does OrderedCollection hold elements?

Tuesday, September 27, 2011

Heuristic 2.1

29

All data should be hidden within it class

Smalltalk instance variables in can be accessed in:

Instance methods of Class where they are defined

Instance methods of subclasses of the Class where they are defined

Tuesday, September 27, 2011

Language Support for Global Data

30

Smalltalk has shared variables

Use sparingly

Use for constants

What is a constant?

Tuesday, September 27, 2011

Hiding Instance Variables

31

Some argue that only two methods should access an instance variable

Class BankAccount
Instance variable: balance

balance
 ^balance

balance: aNumber
 balance := anumber

deposit: aNumber
 self balance: (self balance + aNumber)

Tuesday, September 27, 2011

Why

32

This protects the class from changes in instance variables

Makes easy to enforce constraints

balance: aNumber
 aNumber < 0 ifTrue: [NegativeBalanceError raiseSignal].
 balance := aNumber

Tuesday, September 27, 2011

Hiding Instance Variables &Tools

33

Refactoring browser
Lists all methods accessing an instance variable
Change all accesses to be through access methods
Removes all access through access methods

So don’t worry about hiding instance variables

If later you need to hide them it is easy to do

Tuesday, September 27, 2011

Abstraction

34

“Extracting the essential details about an item or group of items,
while ignoring the unessential details.”
Edward Berard

“The process of identifying common patterns that have systematic
variations; an abstraction represents the common pattern and
provides a means for specifying which variation to use.”
Richard Gabriel

Pattern: Priority queue
Essential Details: length
 items in queue
 operations to add/remove/find item
Variation: link list vs. array implementation
 stack, queue

Tuesday, September 27, 2011

How to Find Abstractions

35

Look at nouns in requirements specification or system description

A refrigerator has a motor, a temperature sensor, a light and a
door. The motor turns on and off primarily as prescribed by the
temperature sensor. However, the motor stops when the door
is opened. The motor restarts when the door is closed if the
temperature is too high. The light is turned on when the door
opens and is turned off when the door is closed.

Tuesday, September 27, 2011

Look at these phrases. Some will be obvious classes, some will be obvious nonsense, and some will fall between obvious and
nonsense. Skip the nonsense, keep the rest. The goal is a list of candidate objects. Some items in the list will be eliminated,
others will be added later. Finding good objects is a skill, like finding a good functional decomposition

Ralph Johnson’s Suggestions for Finding
Abstractions

36

Do one thing
Eliminate duplication
Keep rate of change similar
Decrease coupling, increase cohesion
Minimize interfaces
Minimize size of abstractions
Minimize number of abstractions

Tuesday, September 27, 2011

Do One Thing

37

Methods should do one thing

Method's name should tell what it does

 findString:startingAt:
 asNumber
 asUppercase
 dropFinalVowels

Class should be what its name says

 String
 OrderedCollection
 Array
 ReadStream

Break complex classes/methods into simpler ones

Tuesday, September 27, 2011

Eliminate Duplication

38

(self asInteger - $a asInteger + anInteger) \\ 26 – (self asInteger - $a asInteger)

(self alphabetValue + anInteger) \\ 26 - self alphabetValue.

Tuesday, September 27, 2011

Keep rate of change similar

39

Separate tax tables from employee data from time cards

An object should not contain both
An instance variable that changes every second
An instance variable that changes once a month

Code that is different for each hardware platform
Code that is different for each OS

Tuesday, September 27, 2011

Minimize interfaces

40

Use the smallest interface you can

Use Number instead of Float

Avoid embedding classes in names

add: instead of addNumber:

Tuesday, September 27, 2011

Minimize the size of abstractions

41

Methods should be small

Median size is 3 lines
10 lines is starting to smell

Lots of Little Pieces

Average Median Max

Variables / class 2.1 1 72

Methods / class 16.6 8 359

LOC / method 3.0 2 156

VW 7.6

Classes should be small

7 variables is starting to smell
40 methods is starting to smell

Tuesday, September 27, 2011

Code used to generate Numbers

42

classes :=Smalltalk allClasses reject: [:each | each isMeta]
variablesInClass :=classes collect: [:each | each instVarNames size].
average :=((variablesInClass fold: [:sum :each | sum + each])/
 variablesInClass size) asFloat.
median := variablesInClass asSortedCollection at: variablesInClass size // 2.
max := variablesInClass fold: [:partialMax :each | partialMax max: each]

classes :=Smalltalk allClasses reject: [:each | each isMeta]
methodsInClass :=classes collect: [:each | each selectors size].
average :=((methodsInClass fold: [:sum :each | sum + each])/
 methodsInClass size) asFloat.
mean := methodsInClass asSortedCollection at: methodsInClass size // 2.
max := methodsInClass fold: [:partialMax :each | partialMax max: each]

Variables Per Class

Methods Per Class

Tuesday, September 27, 2011

Note how the above code could use the application of these ideas

LOC / Method

43

methodSizes := OrderedCollection new.
classes
 do: [:class |
 class selectors
 do: [:method |
 | periodCount |
 periodCount := (class compiledMethodAt: method) decompiledSource
 occurrencesOf: $..
 methodSizes add: periodCount + 1]].
average :=((methodSizes fold: [:sum :each | sum + each])/
 methodSizes size) asFloat.
median := methodSizes asSortedCollection at: methodSizes size // 2.
max := methodSizes fold: [:partialMax :each | partialMax max: each]

Tuesday, September 27, 2011

Minimize number of abstractions

44

A class hierarchy 6-7 levels deep is hard to learn

Break large system into subsystems, so people only
have to learn part of the system at a time

Tuesday, September 27, 2011

