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Typical Node Class
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Smalltalk.Core defineClass: #Node
 superclass: #{Core.Object}
 instanceVariableNames: 'data next '

Node>>data

 ^data

Node>>data: anObject

 data := anObject

Node>>next: anObject

 next := anObject

Node>>next

 ^next
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Typical Stack operations
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Stack>>do: aBlock
| current |
current := topOfStack.
[current isNil] whileFalse: [

aBlock value: current data.
current := current next.]

Note how stack extracts/sets Node data

Stack>>push: anObject
| newTop |
newTop := Node new.
newTop data: anObject.
newTop next: topOfStack.
topOfStack := newTop.
size := size++.
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Node is 1/2 class
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Just data

No operations

Stack has to do all the work
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Heuristics
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Heuristic 2.8
Keep related data and behavior in one place

Heuristic 3.3
Beware of classes that have many accesor methods in their public interface.
Having many implies that related data and behavior are not being kept in one place.

Thursday, October 13, 2011



First Node operation
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Constructor method that accepts data and next

Creates Node object that is usable 

Why should users always repeat these lines

newElement := Node new.
newElement data: anObject.
newElement next: topOfStack
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Node methods
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Node class>>data: anObject next: aNodeOrNil

 ^super new setData: anObject next: aNodeOrNil

Node>>setData: anObject next: aNodeOrNil

 data := anObject.
 next := aNodeOrNil
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Now Stack>>push: 
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Stack>>push: anObject

topOfStack := Stack data: anObject next: topOfStack.
size := size +1.
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Another Operation do:
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Node>>do: aBlock
aBlock value: data.
next ifNotNil:  [next do: aBlock].

Stack>>do: aBlock
self isEmpty ifTrue: [^nil].
topOfStack do: aBlock
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Stack methods
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Node>>push: anObject
topOfStack := Stack data: anObject next: topOfStack.
size := size +1.

Node>>pop
| topData |
self isEmpty ifTrue: [self error: 'stack empty, no elements to pop'].
size := size -1.
topData := topOfStack data.
topOfStack := topOfStack next.
^topData

Node>>clear
topOfStack := nil.
size = 0.
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Stack methods
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Node>>size
^size

Node>>do: aBlock
self isEmpty ifTrue: [^nil].
topOfStack do: aBlock

Node>>printOn: aStream
aStream nextPut: $(.
self isEmpty ifTrue: [topOfStack printOn: aStream].
aStream nextPut: $).
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Replacing if Statements
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Use special node to represent end of list
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TailNode
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Empty node at end of list

TailNode>>isEndOfList
^true

TailNode>>do: aBlock

Node>>isEndOList
^false

Node>>do: aBlock
aBlock value: data.
next do: aBlock
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New Stack methods
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Stack>>initialize
self clear.

Stack>>isEmpty
^topOfStack isEndOfList

Stack>>clear
topOfStack := nil.
size = 0.

Stack>>do: aBlock
topOfStack do: aBlock
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