
CS 535 Object-Oriented Programming & Design
Fall Semester, 2011

Doc 14 Assignment 3 Comments 2
Oct 13 2011

Thursday, October 13, 2011

Typical Node Class

2

Smalltalk.Core defineClass: #Node
 superclass: #{Core.Object}
 instanceVariableNames: 'data next '

Node>>data

 ^data

Node>>data: anObject

 data := anObject

Node>>next: anObject

 next := anObject

Node>>next

 ^next

Thursday, October 13, 2011

Typical Stack operations

3

Stack>>do: aBlock
| current |
current := topOfStack.
[current isNil] whileFalse: [

aBlock value: current data.
current := current next.]

Note how stack extracts/sets Node data

Stack>>push: anObject
| newTop |
newTop := Node new.
newTop data: anObject.
newTop next: topOfStack.
topOfStack := newTop.
size := size++.

Thursday, October 13, 2011

Node is 1/2 class

4

Just data

No operations

Stack has to do all the work

Thursday, October 13, 2011

Heuristics

5

Heuristic 2.8
Keep related data and behavior in one place

Heuristic 3.3
Beware of classes that have many accesor methods in their public interface.
Having many implies that related data and behavior are not being kept in one place.

Thursday, October 13, 2011

First Node operation

6

Constructor method that accepts data and next

Creates Node object that is usable

Why should users always repeat these lines

newElement := Node new.
newElement data: anObject.
newElement next: topOfStack

Thursday, October 13, 2011

Node methods

7

Node class>>data: anObject next: aNodeOrNil

 ^super new setData: anObject next: aNodeOrNil

Node>>setData: anObject next: aNodeOrNil

 data := anObject.
 next := aNodeOrNil

Thursday, October 13, 2011

Now Stack>>push:

8

Stack>>push: anObject

topOfStack := Stack data: anObject next: topOfStack.
size := size +1.

Thursday, October 13, 2011

Another Operation do:

9

Node>>do: aBlock
aBlock value: data.
next ifNotNil: [next do: aBlock].

Stack>>do: aBlock
self isEmpty ifTrue: [^nil].
topOfStack do: aBlock

Thursday, October 13, 2011

Stack methods

10

Node>>push: anObject
topOfStack := Stack data: anObject next: topOfStack.
size := size +1.

Node>>pop
| topData |
self isEmpty ifTrue: [self error: 'stack empty, no elements to pop'].
size := size -1.
topData := topOfStack data.
topOfStack := topOfStack next.
^topData

Node>>clear
topOfStack := nil.
size = 0.

Thursday, October 13, 2011

Stack methods

11

Node>>size
^size

Node>>do: aBlock
self isEmpty ifTrue: [^nil].
topOfStack do: aBlock

Node>>printOn: aStream
aStream nextPut: $(.
self isEmpty ifTrue: [topOfStack printOn: aStream].
aStream nextPut: $).

Thursday, October 13, 2011

Replacing if Statements

12

Use special node to represent end of list

Thursday, October 13, 2011

TailNode

13

Empty node at end of list

TailNode>>isEndOfList
^true

TailNode>>do: aBlock

Node>>isEndOList
^false

Node>>do: aBlock
aBlock value: data.
next do: aBlock

Thursday, October 13, 2011

New Stack methods

14

Stack>>initialize
self clear.

Stack>>isEmpty
^topOfStack isEndOfList

Stack>>clear
topOfStack := nil.
size = 0.

Stack>>do: aBlock
topOfStack do: aBlock

Thursday, October 13, 2011

