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1. Never do any work that you can get someone 
else to do for you

4

Example 1 Total of bills that have been paid this quarter for a factory

   total := 0
   aFactory billings do: [:each |
      (each status == #paid and: [each date > startDate])
         ifTrue: [total := total + each amount]].

   total := aPlant totalBillingsPaidSince: startDate.

versus
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1. Never do any work that you can get someone 
else to do for you
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Excuse me Smithers. I need to know the total bills that have been paid so far this 
quarter. No, don’t trouble yourself. If you’ll just lend me the key to your filing cabinet I’ll 
go through  the records myself. I’m not that familiar with your filing system, but how 
complicated can it be? I’ll try not to make too much of a mess.

SMITHERS! I need the total bills that have been paid since the beginning of the 
quarter. No, I’m not interested in the petty details of your filing system. I want that 
total, and I’ll expect it on my desk within the next half millisecond.

Verses
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1. Never do any work that you can get someone 
else to do for you
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somebody clients add: Client new.

somebody addClient: Client new.

verses

Less work

somebody just returns collection 

Needs 

addClient:
removeClient:
more?
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Encapsulation & Responsibility
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Encapsulation is about responsibility 

Who does the work

Who should do the work
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2. Avoid Responsibilty
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If you must accept a responsibility, keep it as vague as possible.

For any responsibility you accept, try to pass the real work off to somebody else.

Stack>>do: aBlock
topOfStack do: aBlock
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Kent Beck's Properties of Good Style
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Kent Beck's Properties of Good Code Stype
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Once and only once

Lots of little pieces

Replacing objects

Moving Objects

Rates of change
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Once and Only Once
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"In a program written with good style, everything is said once and only once"

If have
several methods with same logic
several objects with same methods

then rule is not satisfied

Monday, October 17, 11



Lots of little pieces
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"Good code invariably has small methods and small objects"

Small pieces allow you to satisfy "once and only once"
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Replacing objects
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Good style leads to easily replaceable objects

When you can extend a system soley by adding new objects without modifying 
exisiting objects, then you have system that is fexible and cheap to maintain

Needs lots  of little pieces
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Some heuristics
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OrderedCollection
String
Dictionary
Characters
Streams
Trolls
etc.
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Adventure open
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What does "main" in a program do? Think of a GUI application. Where is the main there?



2.8 A class should capture one and only one key abstraction
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This is the most important idea in OO
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To perform an operation send a message to the object that contains the data
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Spin off nonrelated information into another class

VagueClass

data

f1()

f2()
f3()

f4()

Data1

Class1

f1()

f2()

Data2

Class2

f3()

f4()
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God object is an object that knows too much or does too much

Behavioral Form

Replaces the main
Does too much
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Definition is from Wikipedia



Room
Heat Flow 

Regulator
Furnace

getDesiredTemp

getActualTemp

Room
Heat Flow 

Regulator
Furnace

needHeat
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Distribute system intelligence horizontally as uniform as possible

Do not create god classes/objects
Be very suspicous of a class whose name contains Driver, Manager, System

Beware of classes that have many accessor methods defined in there public interface

Beware of classes that have too much noncommunicating behavoir
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Model should not depend on the interface
The interface should depend on the model

So interface needs to access data in the model
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