
CS 535 Object-Oriented Programming & Design
Fall Semester, 2011

Doc 15 Some OO Advice
Oct 17 2011

Copyright ©, All rights reserved. 2011 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Monday, October 17, 11

References

2

Object-Oriented Design Heuristics, Riel

Principles of OO Design, or Everything I Know About Programming, I Learned from Dilbert, http://
alanknightsblog.blogspot.com/2011/10/principles-of-oo-design-or-everything-i.html

Smalltalk Best Practice Patterns, Beck, Prentice Hall,1997

Monday, October 17, 11

3

Principles of OO Design, or Everything I Know
About Programming, I Learned from Dilbert

Alan Knight

Monday, October 17, 11

http://alanknightsblog.blogspot.com/2011/10/principles-of-oo-design-or-everything-i.html

1. Never do any work that you can get someone
else to do for you

4

Example 1 Total of bills that have been paid this quarter for a factory

 total := 0
 aFactory billings do: [:each |
 (each status == #paid and: [each date > startDate])
 ifTrue: [total := total + each amount]].

 total := aPlant totalBillingsPaidSince: startDate.

versus

Monday, October 17, 11

1. Never do any work that you can get someone
else to do for you

5

Excuse me Smithers. I need to know the total bills that have been paid so far this
quarter. No, don’t trouble yourself. If you’ll just lend me the key to your filing cabinet I’ll
go through the records myself. I’m not that familiar with your filing system, but how
complicated can it be? I’ll try not to make too much of a mess.

SMITHERS! I need the total bills that have been paid since the beginning of the
quarter. No, I’m not interested in the petty details of your filing system. I want that
total, and I’ll expect it on my desk within the next half millisecond.

Verses

Monday, October 17, 11

1. Never do any work that you can get someone
else to do for you

6

somebody clients add: Client new.

somebody addClient: Client new.

verses

Less work

somebody just returns collection

Needs

addClient:
removeClient:
more?

Monday, October 17, 11

Encapsulation & Responsibility

7

Encapsulation is about responsibility

Who does the work

Who should do the work

Monday, October 17, 11

2. Avoid Responsibilty

8

If you must accept a responsibility, keep it as vague as possible.

For any responsibility you accept, try to pass the real work off to somebody else.

Stack>>do: aBlock
topOfStack do: aBlock

Monday, October 17, 11

9

Kent Beck's Properties of Good Style

Monday, October 17, 11

Kent Beck's Properties of Good Code Stype

10

Once and only once

Lots of little pieces

Replacing objects

Moving Objects

Rates of change

Monday, October 17, 11

Once and Only Once

11

"In a program written with good style, everything is said once and only once"

If have
several methods with same logic
several objects with same methods

then rule is not satisfied

Monday, October 17, 11

Lots of little pieces

12

"Good code invariably has small methods and small objects"

Small pieces allow you to satisfy "once and only once"

Monday, October 17, 11

Replacing objects

13

Good style leads to easily replaceable objects

When you can extend a system soley by adding new objects without modifying
exisiting objects, then you have system that is fexible and cheap to maintain

Needs lots of little pieces

Monday, October 17, 11

14

Some heuristics

Monday, October 17, 11

Monday, October 17, 11

OrderedCollection
String
Dictionary
Characters
Streams
Trolls
etc.

Monday, October 17, 11

Adventure open

Monday, October 17, 11

What does "main" in a program do? Think of a GUI application. Where is the main there?

2.8 A class should capture one and only one key abstraction

Monday, October 17, 11

This is the most important idea in OO

Monday, October 17, 11

To perform an operation send a message to the object that contains the data

Monday, October 17, 11

21

Spin off nonrelated information into another class

VagueClass

data

f1()

f2()
f3()

f4()

Data1

Class1

f1()

f2()

Data2

Class2

f3()

f4()

Monday, October 17, 11

God object is an object that knows too much or does too much

Behavioral Form

Replaces the main
Does too much

Monday, October 17, 11

Definition is from Wikipedia

Room
Heat Flow

Regulator
Furnace

getDesiredTemp

getActualTemp

Room
Heat Flow

Regulator
Furnace

needHeat

Monday, October 17, 11

Distribute system intelligence horizontally as uniform as possible

Do not create god classes/objects
Be very suspicous of a class whose name contains Driver, Manager, System

Beware of classes that have many accessor methods defined in there public interface

Beware of classes that have too much noncommunicating behavoir

Monday, October 17, 11

Model should not depend on the interface
The interface should depend on the model

So interface needs to access data in the model

Monday, October 17, 11

