
CS 535 Object-Oriented Programming & Design
Fall Semester, 2011

Doc 19 Some MVC Issues
Nov 29 2011

Copyright ©, All rights reserved. 2011 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, December 1, 11

Model-View-Controller (MVC)

2

Model

Encapsulates

Domain information
Core data and functionality

Independent of

Specific output representations
Input behavior

View

Display data to the user

Obtains data from the model

Multiple views of the model are possible

Thursday, December 1, 11

Controller

3

Handles input

Mouse movements and clicks
Keyboard events

Each view has it's own controller

Programmers commonly don't see controllers

Thursday, December 1, 11

Smalltalk Uses Application Model

4

Domain
Model

Application Model

View

Application Model
Presentation of domain to user
GUI + logic to present data from domain

Thursday, December 1, 11

Application Model becomes Controller

5

Handles interaction between View and Model

Thursday, December 1, 11

Main Points

6

Application Model is not the Model

The model should not know about the view

Thursday, December 1, 11

Application Model is not the Model

7

Why does it matter?

Thursday, December 1, 11

The model should not know about the view

8

Why does it matter?

Thursday, December 1, 11

Small Examples Hide the Issues

9

Thursday, December 1, 11

Clock App

10

Model

ButtonExample

View

Created dynamically from
window spec

Controller

Hidden

Thursday, December 1, 11

Clock App

11

startTimer
 clock startAfter: 0 seconds

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
 ifTrue:
 [timeDisplay := 0
asValue]
 ifFalse:
 [timeDisplay]

Application Model Logic

View

Thursday, December 1, 11

Clock App - Where is the Domain Model?

12

initialize
 time := 0.
 clock := Timer new.
 clock
 period: 1 seconds;

 block:
 [time := time + 1.
 timeDisplay value: time]

time + clock = Domain Model

But Application Model contains
code to make domain model work

Domain logic is in application model

Thursday, December 1, 11

So who cares?

13

Domain Logic in controller
Can't reuse domain model - missing logic

Controller becomes more complex
Does two different things

Thursday, December 1, 11

So create Domain Object - Clock

14

Smalltalk defineClass: #Clock
 superclass: #{Core.Object}
 instanceVariableNames: 'count timer ' setPeriod: aDuration

 count := 0.
 timer := Timer new.
 timer period: aDuration.
 timer block: [timer := timer + 1]

start
 timer startAfter: 0 seconds

stop
 timer stop

time
 ^count

period: aDuration
 ^super new setPeriod: aDuration

Class Method

Instance Methods

Thursday, December 1, 11

But how does view know clock change?

15

Thursday, December 1, 11

Clock as Subject

16

Smalltalk defineClass: #Clock
 superclass: #{Core.Object}
 instanceVariableNames: 'count timer '

setPeriod: aDuration
 count := 0.
 timer := Timer new.
 timer period: aDuration.
 timer block:
 [count := count + 1.
 self changed]

start
 timer startAfter: 0 seconds

stop
 timer stop

time
 ^count

period: aDuration
 ^super new

setPeriod: aDuration

Class Method

Instance Methods

Thursday, December 1, 11

Clock App with Clock subject

17

initialize
 clock := Clock period: 1 seconds.
 clock addDependent: self

startTimer
 clock start

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
 ifTrue:
 [timeDisplay := 0
asValue]
 ifFalse:
 [timeDisplay]update: aSymbol

 timeDisplay value: clock time

Thursday, December 1, 11

Small Examples Hide the Issues

18

Thursday, December 1, 11

Hypothetical Situation

19

Player has to display what it holds

Rooms has to display what it contains

Trolls display actions

Thursday, December 1, 11

Does Application Model Know about

20

Player
Trolls
Rooms

Smalltalk defineClass: #Advententure
 superclass: #{UI.ApplicationModel}
 indexedType: #none
 private: false
 instanceVariableNames: 'player trolls rooms corridors '
 classInstanceVariableNames: ''
 imports: ''
 category: ''

What are the issues?

Thursday, December 1, 11

Observer pattern

21

Subject notifies all observers when it changes

Subject

Observer1 Observer2 Observer3

Subject 1 Subject 2 Subject 3

Observer

Thursday, December 1, 11

Button Counter Example

22

Thursday, December 1, 11

ButtonExample>>count

 ^count isNil
 ifTrue:
 [count := 0 asValue]
 ifFalse:
 [count]

ButtonExample>>go

 self count value: (self count value + 1) .
 ^self

Thursday, December 1, 11

Thursday, December 1, 11

ButtonExample>>countAdapter

 | countAdapter |
 countAdapter := AspectAdaptor subject: self.
 countAdapter
 forAspect: #count;
 subjectSendsUpdates: true.
 ^countAdapter

ButtonExample>>go

 count := count + 1.
 self changed: #count.
 Dialog warn: 'Time to go'.
 ^self

ButtonExample>>initialize

 count := 0

ButtonExample>>count: anInteger

 count := anInteger

ButtonExample>>count

 ^count

Thursday, December 1, 11

The text widget wants a ValueHolder, we want to have an integer. So we use an adapter that looks like a ValueHolder to the text
widget. However when it needs to access the value it uses the count and count: methods.

Thursday, December 1, 11

ButtonExample
Simple example
Designed to show how to use a widget

It handles both view logic and domain logic

Thursday, December 1, 11

Smalltalk defineClass: #Counter
 superclass: #{Core.Object}
 instanceVariableNames: 'count '

Counter class>>new
 ^super new initialize

Counter>>count
 ^count

Counter>>count: anInteger
 count := anInteger

Counter>>increment
 self count: count + 1

Counter>>initialize
 count := 0

Thursday, December 1, 11

Smalltalk defineClass: #ButtonExample
 superclass: #{UI.ApplicationModel}
 instanceVariableNames: 'count '

initialize
 count := Counter new

countAdapter
 | countAdapter |
 countAdapter := AspectAdaptor subject: count.
 countAdapter
 forAspect: #count;
 subjectSendsUpdates: true.
 ^countAdapter

go
 count increment.
 count changed: #count.
 Dialog warn: 'Time to go'.
 ^self

Thursday, December 1, 11

ButtonExample class controls when count changes

ButtonExample can then inform window of changes
Keeps Counter class independent of GUI

Thursday, December 1, 11

AnApplicationModel

What if other objects can change count?

ButtonExample will not be able to inform window of changes

Thursday, December 1, 11

When we have multiple domain objects a message to one may result in changes to one or more objects. If these objects
contribute to the display it may not be possible for the application model to notify the view how to update itself correctly.

Smalltalk defineClass: #Counter
 superclass: #{Core.Object}
 instanceVariableNames: 'count '

Counter class>>new
 ^super new initialize

Counter>>count
 ^count

Counter>>count: anInteger
 count := anInteger

Counter>>increment
 self count: count + 1.
 self changed: #count

Counter>>initialize
 count := 0

Thursday, December 1, 11

Smalltalk defineClass: #ButtonExample
 superclass: #{UI.ApplicationModel}
 instanceVariableNames: 'count '

initialize
 count := Counter new

countAdapter
 | countAdapter |
 countAdapter := AspectAdaptor subject: count.
 countAdapter
 forAspect: #count;
 subjectSendsUpdates: true.
 ^countAdapter

go
 count increment.
 Dialog warn: 'Time to go'.
 ^self

Thursday, December 1, 11

ButtonExample>>validateNumber: aController
 | entry |
 entry := aController editValue.
 ^entry >= 0

Thursday, December 1, 11

Text Editor
widget

Thursday, December 1, 11

TextExample>>text
 ^text isNil
 ifTrue:
 [text := 'Hi Mom' asValue]
 ifFalse:
 [text]

TextExample>>add
 self text

value: self text value , '\Add more text\' withCRs

Thursday, December 1, 11

