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Common Manager Behavior
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A project is behind schedule

So to get back on schedule they hire more people
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The Result
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The project will be even later
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Parameters of any Project
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Time
How much time we have for the project

Scope (Size)
Features of the project
How much work is to be done

Quality
The quality of work

Cost
How many people work
Tools used
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Non-linear Relationships

5

0

250

500

750

1000

0 1 2 3 4 5 6 7 8 9 10

Size

Time Required

Wednesday, November 9, 11



So 
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Doubling size of project more that doubles the amount of work

Doubling the team does not halve the time
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Why adding people slows down projects

7

Existing people need to help bring new people up to speed
So get less work done

More people on team makes it harder to communicate
More meetings
More documents
Less work
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Small is better
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Small is better
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But people act like they don't believe it
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Survey
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1/2 way done with project

Need make orcs move independent of player

But have never done that before so don't know how

Option A

Start new project 
to explore how to do it

Option B

Using existing project to 
explore how to do it
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Which is better
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Technical Spikes

12

How do orcs move?

Parsing commands
What did the user just type?

What is a program?

How detect near things?
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Goal - How to make Orcs Move
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Spike 
Simple Clock app
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Timer
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| timer count |
count := 0.
timer := Timer every: 0.2 seconds
   do: 
    [Transcript
     show: count printString;
     cr;
     flush.
    count := count + 1].
3 seconds wait.
timer := nil

But timer goes way when code done

Need to keep a reference that continues
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Some GUI review
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Gui Builder

Buttons

Text
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UI Painter Windows

16
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Palette - Widgets that we can put in the window
Unlabeled Canvas - Window we are constructing
GUI Painter Tool - Details about the widgets in our new window



The App
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initialize
 time := 0.
 clock := Timer new.
 clock
  period: 1 seconds;

 block: 
    [time := time + 1.
    timeDisplay value: time]

startTimer
 clock startAfter: 0 seconds

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
  ifTrue:
   [timeDisplay := 0 asValue]
  ifFalse:
   [timeDisplay]
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How does this work?
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initialize
 time := 0.
 clock := Timer new.
 clock
  period: 1 seconds;

 block: 
    [time := time + 1.
    timeDisplay value: time]

startTimer
 clock startAfter: 0 seconds

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
  ifTrue:
   [timeDisplay := 0 asValue]
  ifFalse:
   [timeDisplay]
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Observer
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Subject notifies all observers when it changes

Subject

Observer1 Observer2 Observer3
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Keeping it Flexible
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Subject>>notifyObservers
observers do: [:each | each notify]

addObserver

removeObserver

notifyObservers

observers

Subject

getState

state

ConcreteSubject

notify

Observer
*

notify

concreteSubject

ConcreteObserver
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ValueHolder
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A subject

When value changes it notifies observers

foo asValue
Returns ValueHolder on foo

valueHolder value: newValue
Changes the value
Notifies observers
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How does this work?
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initialize
 time := 0.
 clock := Timer new.
 clock
  period: 1 seconds;

 block: 
    [time := time + 1.
    timeDisplay value: time]

timeDisplay
 ^timeDisplay isNil
  ifTrue:
   [timeDisplay := 0 asValue]
  ifFalse:
   [timeDisplay]

Observer

Subject

Subject Changed
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Coupling
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Measure of the interdependence among modules 

"Unnecessary object coupling needlessly decreases the reusability of the 
coupled objects "

"Unnecessary object coupling also increases the chances of system 
corruption when changes are made to one or more of the coupled objects" 
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Coupling and Transcript
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Smalltalk.CS535 defineClass: #Customer
   superclass: #{Core.Object}
   instanceVariableNames: 'name phone id '

Customer>>display
   Transcript
      show: 'Customer(';
      print: name;
      show: ', ';
      print: phone;
      show: ', ';
      print: id;
      show: ')' 

foo := Customer new.
...
foo display.
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Separate display device from Customer
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Customer>>printOn: aStream
   aStream
      print: 'Customer(';
      print: name;
      print: ', ';
      print: phone;
      print: ', ';
      print: id;
      print: ')' 

foo := Customer new.
...
Transcript 

show: foo printString.

bar := 'bar' asFilename writeStream.
bar

nextPutAll: foo printString
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By separating the output device from the class we gain flexibility on where the output goes.



Model-View-Controller (MVC)
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Model

Encapsulates 

Domain information
Core data and functionality

Independent of 

Specific output representations
Input behavior

View

Display data to the user 

Obtains data from the model 

Multiple views of the model are possible 
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Controller
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Handles input 

Mouse movements and clicks
Keyboard events

Each view has it's own controller 

Programmers commonly don't see controllers 
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The Controller Mess 

28

Smalltalk 80 created the MVC pattern

Considered very good

But Smalltalk found controller 
Painful 
Always did same thing

So Smalltalk hid the controller

But everyone wants to copy Smalltalk's MVC
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Smalltalk Uses Application Model
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Domain
Model

Application Model

View

Application Model
Presentation of domain to user
GUI + logic to present data from domain
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Application Model == Controller
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What all systems now call Controller is really Application model

Presentation of domain to user
GUI + logic to present data from domain
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The Controller Trap
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Controller ends up doing all the work

Domain logic ends up in controller
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Clock App
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Model

ButtonExample

View

Created dynamically from
window spec

Controller

Hidden
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Clock  App
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startTimer
 clock startAfter: 0 seconds

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
  ifTrue:
   [timeDisplay := 0 
asValue]
  ifFalse:
   [timeDisplay]

Application Model Logic

View
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Clock  App - Where is the Domain Model?
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initialize
 time := 0.
 clock := Timer new.
 clock
  period: 1 seconds;

 block: 
    [time := time + 1.
    timeDisplay value: time]

time + clock = Domain Model

But Application Model contains
code to make domain model work

Domain logic is in application model
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So who cares?
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Domain Logic in controller
Can't reuse domain model - missing logic

Controller becomes more complex
Does two different things
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So create Domain Object - Clock
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Smalltalk defineClass: #Clock
 superclass: #{Core.Object}
 instanceVariableNames: 'count timer ' setPeriod: aDuration

 count := 0.
 timer := Timer new.
 timer period: aDuration.
 timer block: [timer := timer + 1]

start
 timer startAfter: 0 seconds

stop
 timer stop

time
 ^count

period: aDuration
 ^super new setPeriod: aDuration

Class Method

Instance Methods

Wednesday, November 9, 11



But how to know when to display new time
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Three solutions

Clock block

Classic Subject-Observer

Announcements
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Clock Block
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Give Clock object a block

Clock executes block when timer goes off

Block updates text view with new time
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So create Domain Object - Clock
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Smalltalk defineClass: #Clock
 superclass: #{Core.Object}
 instanceVariableNames: 'count timer operation'

setPeriod: aDuration operation: aBlock
 count := 0.
 operation := aBlock.
 timer := Timer new.
 timer period: aDuration.
 timer block: 
   [count := count + 1.
   operation value: count]

start
 timer startAfter: 0 seconds

stop
 timer stop

time
 ^count

period: aDuration operation: aBlock
 ^super new 

setPeriod: aDuration operation: aBlock

Class Method

Instance Methods
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New Clock App
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initialize

 clock := Clock period: 1 seconds
    operation: [:time | timeDisplay value: time]

startTimer
 clock start

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
  ifTrue:
   [timeDisplay := 0 
asValue]
  ifFalse:
   [timeDisplay]
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Advantage of Using Clock Domain Object
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We can use Clock in other settings

(like to tell Orcs when to move)
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Disadvantage
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Clock can only notify one thing
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Solution - Observer pattern
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Subject notifies all observers when it changes

Subject

Observer1 Observer2 Observer3

Make Clock a subject so it can have many observers
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Classic Observer pattern
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To add an observer subject
subject addDependent: anObserver
All classes in Smalltalk act as subject

How subject starts notification
self changed.

After "self changed" subject sends message
"update: " to all Observers

How observer registers with subject
subject addDependent: theObserver
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This is the basics, there are a few more options in Smalltalk.



Clock as Subject
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Smalltalk defineClass: #Clock
 superclass: #{Core.Object}
 instanceVariableNames: 'count timer '

setPeriod: aDuration
 count := 0.
 timer := Timer new.
 timer period: aDuration.
 timer block: 
   [count := count + 1.
   self changed]

start
 timer startAfter: 0 seconds

stop
 timer stop

time
 ^count

period: aDuration
 ^super new 

setPeriod: aDuration

Class Method

Instance Methods
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Clock App with Clock subject
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initialize
 clock := Clock period: 1 seconds.
 clock addDependent: self

startTimer
 clock start

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
  ifTrue:
   [timeDisplay := 0 
asValue]
  ifFalse:
   [timeDisplay]update: aSymbol

 timeDisplay value: clock time
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Advantages of using Subject
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Clock can have multiple observers

So clock could tell multiple orcs to move
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Disadvantage
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Each observer needs to implement "update:"

Update method needs to know 
what to do
How to get data from subject
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Announcements
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Observer pattern

Specify which method subject calls on observer

How subject starts notification
self announce: AnnouncmentType

After "self announce" subject sends
What ever method indicated to observer

How observer registers with subject
subject when: AnnouncementType send: #methodName to: subject
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Clock as Subject
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Smalltalk defineClass: #Clock
 superclass: #{Core.Announcer}
 instanceVariableNames: 'count timer '

setPeriod: aDuration
 count := 0.
 timer := Timer new.
 timer period: aDuration.
 timer block: 
   [count := count + 1.
   self announce: 
ClockClick]

start
 timer startAfter: 0 seconds

stop
 timer stop

time
 ^count

period: aDuration
 ^super new 

setPeriod: aDuration

Class Method

Instance Methods
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ClockClick
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Smalltalk defineClass: #ClockClick
 superclass: #{Core.Announcement}
 indexedType: #none
 private: false
 instanceVariableNames: ''
 classInstanceVariableNames: ''
 imports: ''
 category: ''
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Clock App with Clock & Announce
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initialize
 clock := Clock period: 1 seconds.
 clock when: ClockClick 

send: #updateTimeDisplay to: self

startTimer
 clock start

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
  ifTrue:
   [timeDisplay := 0 
asValue]
  ifFalse:
   [timeDisplay]updateTimeDisplay

 timeDisplay value: clock time
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Options
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Can send data in Announcement

Multiple parameters possible

Subject can send different types of announcements

Observers can do different things to different types announcements
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