
CS 535 Object-Oriented Programming & Design
Fall Semester, 2011

Doc 18 How do orcs move
Nov 10 2011

Copyright ©, All rights reserved. 2011 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Wednesday, November 9, 11

Common Manager Behavior

2

A project is behind schedule

So to get back on schedule they hire more people

Wednesday, November 9, 11

The Result

3

The project will be even later

Wednesday, November 9, 11

Parameters of any Project

4

Time
How much time we have for the project

Scope (Size)
Features of the project
How much work is to be done

Quality
The quality of work

Cost
How many people work
Tools used

Wednesday, November 9, 11

Non-linear Relationships

5

0

250

500

750

1000

0 1 2 3 4 5 6 7 8 9 10

Size

Time Required

Wednesday, November 9, 11

So

6

Doubling size of project more that doubles the amount of work

Doubling the team does not halve the time

Wednesday, November 9, 11

Why adding people slows down projects

7

Existing people need to help bring new people up to speed
So get less work done

More people on team makes it harder to communicate
More meetings
More documents
Less work

Wednesday, November 9, 11

Small is better

8

0

250

500

750

1000

0 1 2 3 4 5 6 7 8 9 10

Wednesday, November 9, 11

Small is better

9

0

250

500

750

1000

0 1 2 3 4 5 6 7 8 9 10

But people act like they don't believe it

Wednesday, November 9, 11

Survey

10

1/2 way done with project

Need make orcs move independent of player

But have never done that before so don't know how

Option A

Start new project
to explore how to do it

Option B

Using existing project to
explore how to do it

Wednesday, November 9, 11

Which is better

11

0

250

500

750

1000

0 1 2 3 4 5 6 7 8 9 10

Size

Time Required

Option A

Option B

Wednesday, November 9, 11

Technical Spikes

12

How do orcs move?

Parsing commands
What did the user just type?

What is a program?

How detect near things?

Wednesday, November 9, 11

Goal - How to make Orcs Move

13

Spike
Simple Clock app

Wednesday, November 9, 11

Timer

14

| timer count |
count := 0.
timer := Timer every: 0.2 seconds
 do:
 [Transcript
 show: count printString;
 cr;
 flush.
 count := count + 1].
3 seconds wait.
timer := nil

But timer goes way when code done

Need to keep a reference that continues

Wednesday, November 9, 11

Some GUI review

15

Gui Builder

Buttons

Text

Wednesday, November 9, 11

UI Painter Windows

16

Wednesday, November 9, 11

Palette - Widgets that we can put in the window
Unlabeled Canvas - Window we are constructing
GUI Painter Tool - Details about the widgets in our new window

The App

17

initialize
 time := 0.
 clock := Timer new.
 clock
 period: 1 seconds;

 block:
 [time := time + 1.
 timeDisplay value: time]

startTimer
 clock startAfter: 0 seconds

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
 ifTrue:
 [timeDisplay := 0 asValue]
 ifFalse:
 [timeDisplay]

Wednesday, November 9, 11

How does this work?

18

initialize
 time := 0.
 clock := Timer new.
 clock
 period: 1 seconds;

 block:
 [time := time + 1.
 timeDisplay value: time]

startTimer
 clock startAfter: 0 seconds

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
 ifTrue:
 [timeDisplay := 0 asValue]
 ifFalse:
 [timeDisplay]

Wednesday, November 9, 11

Observer

19

Subject notifies all observers when it changes

Subject

Observer1 Observer2 Observer3

Wednesday, November 9, 11

Keeping it Flexible

20

Subject>>notifyObservers
observers do: [:each | each notify]

addObserver

removeObserver

notifyObservers

observers

Subject

getState

state

ConcreteSubject

notify

Observer
*

notify

concreteSubject

ConcreteObserver

Wednesday, November 9, 11

ValueHolder

21

A subject

When value changes it notifies observers

foo asValue
Returns ValueHolder on foo

valueHolder value: newValue
Changes the value
Notifies observers

Wednesday, November 9, 11

How does this work?

22

initialize
 time := 0.
 clock := Timer new.
 clock
 period: 1 seconds;

 block:
 [time := time + 1.
 timeDisplay value: time]

timeDisplay
 ^timeDisplay isNil
 ifTrue:
 [timeDisplay := 0 asValue]
 ifFalse:
 [timeDisplay]

Observer

Subject

Subject Changed

Wednesday, November 9, 11

Coupling

23

Measure of the interdependence among modules

"Unnecessary object coupling needlessly decreases the reusability of the
coupled objects "

"Unnecessary object coupling also increases the chances of system
corruption when changes are made to one or more of the coupled objects"

Wednesday, November 9, 11

Coupling and Transcript

24

Smalltalk.CS535 defineClass: #Customer
 superclass: #{Core.Object}
 instanceVariableNames: 'name phone id '

Customer>>display
 Transcript
 show: 'Customer(';
 print: name;
 show: ', ';
 print: phone;
 show: ', ';
 print: id;
 show: ')'

foo := Customer new.
...
foo display.

Wednesday, November 9, 11

Separate display device from Customer

25

Customer>>printOn: aStream
 aStream
 print: 'Customer(';
 print: name;
 print: ', ';
 print: phone;
 print: ', ';
 print: id;
 print: ')'

foo := Customer new.
...
Transcript

show: foo printString.

bar := 'bar' asFilename writeStream.
bar

nextPutAll: foo printString

Wednesday, November 9, 11

By separating the output device from the class we gain flexibility on where the output goes.

Model-View-Controller (MVC)

26

Model

Encapsulates

Domain information
Core data and functionality

Independent of

Specific output representations
Input behavior

View

Display data to the user

Obtains data from the model

Multiple views of the model are possible

Wednesday, November 9, 11

Controller

27

Handles input

Mouse movements and clicks
Keyboard events

Each view has it's own controller

Programmers commonly don't see controllers

Wednesday, November 9, 11

The Controller Mess

28

Smalltalk 80 created the MVC pattern

Considered very good

But Smalltalk found controller
Painful
Always did same thing

So Smalltalk hid the controller

But everyone wants to copy Smalltalk's MVC

Wednesday, November 9, 11

Smalltalk Uses Application Model

29

Domain
Model

Application Model

View

Application Model
Presentation of domain to user
GUI + logic to present data from domain

Wednesday, November 9, 11

Application Model == Controller

30

What all systems now call Controller is really Application model

Presentation of domain to user
GUI + logic to present data from domain

Wednesday, November 9, 11

The Controller Trap

31

Controller ends up doing all the work

Domain logic ends up in controller

Wednesday, November 9, 11

Clock App

32

Model

ButtonExample

View

Created dynamically from
window spec

Controller

Hidden

Wednesday, November 9, 11

Clock App

33

startTimer
 clock startAfter: 0 seconds

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
 ifTrue:
 [timeDisplay := 0
asValue]
 ifFalse:
 [timeDisplay]

Application Model Logic

View

Wednesday, November 9, 11

Clock App - Where is the Domain Model?

34

initialize
 time := 0.
 clock := Timer new.
 clock
 period: 1 seconds;

 block:
 [time := time + 1.
 timeDisplay value: time]

time + clock = Domain Model

But Application Model contains
code to make domain model work

Domain logic is in application model

Wednesday, November 9, 11

So who cares?

35

Domain Logic in controller
Can't reuse domain model - missing logic

Controller becomes more complex
Does two different things

Wednesday, November 9, 11

So create Domain Object - Clock

36

Smalltalk defineClass: #Clock
 superclass: #{Core.Object}
 instanceVariableNames: 'count timer ' setPeriod: aDuration

 count := 0.
 timer := Timer new.
 timer period: aDuration.
 timer block: [timer := timer + 1]

start
 timer startAfter: 0 seconds

stop
 timer stop

time
 ^count

period: aDuration
 ^super new setPeriod: aDuration

Class Method

Instance Methods

Wednesday, November 9, 11

But how to know when to display new time

37

Three solutions

Clock block

Classic Subject-Observer

Announcements

Wednesday, November 9, 11

Clock Block

38

Give Clock object a block

Clock executes block when timer goes off

Block updates text view with new time

Wednesday, November 9, 11

So create Domain Object - Clock

39

Smalltalk defineClass: #Clock
 superclass: #{Core.Object}
 instanceVariableNames: 'count timer operation'

setPeriod: aDuration operation: aBlock
 count := 0.
 operation := aBlock.
 timer := Timer new.
 timer period: aDuration.
 timer block:
 [count := count + 1.
 operation value: count]

start
 timer startAfter: 0 seconds

stop
 timer stop

time
 ^count

period: aDuration operation: aBlock
 ^super new

setPeriod: aDuration operation: aBlock

Class Method

Instance Methods

Wednesday, November 9, 11

New Clock App

40

initialize

 clock := Clock period: 1 seconds
 operation: [:time | timeDisplay value: time]

startTimer
 clock start

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
 ifTrue:
 [timeDisplay := 0
asValue]
 ifFalse:
 [timeDisplay]

Wednesday, November 9, 11

Advantage of Using Clock Domain Object

41

We can use Clock in other settings

(like to tell Orcs when to move)

Wednesday, November 9, 11

Disadvantage

42

Clock can only notify one thing

Wednesday, November 9, 11

Solution - Observer pattern

43

Subject notifies all observers when it changes

Subject

Observer1 Observer2 Observer3

Make Clock a subject so it can have many observers

Wednesday, November 9, 11

Classic Observer pattern

44

To add an observer subject
subject addDependent: anObserver
All classes in Smalltalk act as subject

How subject starts notification
self changed.

After "self changed" subject sends message
"update: " to all Observers

How observer registers with subject
subject addDependent: theObserver

Wednesday, November 9, 11

This is the basics, there are a few more options in Smalltalk.

Clock as Subject

45

Smalltalk defineClass: #Clock
 superclass: #{Core.Object}
 instanceVariableNames: 'count timer '

setPeriod: aDuration
 count := 0.
 timer := Timer new.
 timer period: aDuration.
 timer block:
 [count := count + 1.
 self changed]

start
 timer startAfter: 0 seconds

stop
 timer stop

time
 ^count

period: aDuration
 ^super new

setPeriod: aDuration

Class Method

Instance Methods

Wednesday, November 9, 11

Clock App with Clock subject

46

initialize
 clock := Clock period: 1 seconds.
 clock addDependent: self

startTimer
 clock start

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
 ifTrue:
 [timeDisplay := 0
asValue]
 ifFalse:
 [timeDisplay]update: aSymbol

 timeDisplay value: clock time

Wednesday, November 9, 11

Advantages of using Subject

47

Clock can have multiple observers

So clock could tell multiple orcs to move

Wednesday, November 9, 11

Disadvantage

48

Each observer needs to implement "update:"

Update method needs to know
what to do
How to get data from subject

Wednesday, November 9, 11

Announcements

49

Observer pattern

Specify which method subject calls on observer

How subject starts notification
self announce: AnnouncmentType

After "self announce" subject sends
What ever method indicated to observer

How observer registers with subject
subject when: AnnouncementType send: #methodName to: subject

Wednesday, November 9, 11

Clock as Subject

50

Smalltalk defineClass: #Clock
 superclass: #{Core.Announcer}
 instanceVariableNames: 'count timer '

setPeriod: aDuration
 count := 0.
 timer := Timer new.
 timer period: aDuration.
 timer block:
 [count := count + 1.
 self announce:
ClockClick]

start
 timer startAfter: 0 seconds

stop
 timer stop

time
 ^count

period: aDuration
 ^super new

setPeriod: aDuration

Class Method

Instance Methods

Wednesday, November 9, 11

ClockClick

51

Smalltalk defineClass: #ClockClick
 superclass: #{Core.Announcement}
 indexedType: #none
 private: false
 instanceVariableNames: ''
 classInstanceVariableNames: ''
 imports: ''
 category: ''

Wednesday, November 9, 11

Clock App with Clock & Announce

52

initialize
 clock := Clock period: 1 seconds.
 clock when: ClockClick

send: #updateTimeDisplay to: self

startTimer
 clock start

stopTimer
 clock stop

timeDisplay
 ^timeDisplay isNil
 ifTrue:
 [timeDisplay := 0
asValue]
 ifFalse:
 [timeDisplay]updateTimeDisplay

 timeDisplay value: clock time

Wednesday, November 9, 11

Options

53

Can send data in Announcement

Multiple parameters possible

Subject can send different types of announcements

Observers can do different things to different types announcements

Wednesday, November 9, 11

