
CS 535 Object-Oriented Programming & Design
Fall Semester, 2011

Doc 6 Smalltalk Classes
Sept 7 2011

Copyright ©, All rights reserved. 2011 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Wednesday, September 7, 2011

References

2

Ralph Johnson's University of Illinois, Urbana-Champaign CS 497 lecture notes,
http://st-www.cs.uiuc.edu/users/cs497/

Smalltalk Best Practice Patterns, Beck

Smalltalk With Style, Klimas, Skublics, Thomas

Reading

Smalltalk by Example, Alex Sharp,
Chapter 2 Methods
Chapter 8 Control Structures
Chapter 4 Variables
Chapter 5 Instance Creation

Wednesday, September 7, 2011

3

Classes

Wednesday, September 7, 2011

Objects & Classes - Smalltalk Language Details

4

Items to cover

Defining classes
Packages
Namespaces
Class names

Methods
 • Instance
 • Class

Variables
 • Instance variables
 • Class instance variables
 • Shared variables

Inheritance

self & super

Wednesday, September 7, 2011

The Rules

5

Everything in Smalltalk is an object

All actions are done by sending a message to an object

Every object is an instance of a class

All classes have a parent class

Object is the root class

Wednesday, September 7, 2011

How do you Define a Class?

6

Wednesday, September 7, 2011

The previous slide gives the answer but you may not believe it.

Defining Point Class

7

Smalltalk.Core defineClass: #Point
 superclass: #{Core.ArithmeticValue}
 indexedType: #none
 private: false
 instanceVariableNames: 'x y '
 classInstanceVariableNames: ''
 imports: ''
 category: 'Graphics-Geometry'

Wednesday, September 7, 2011

Using the rules we send a message to an object. In this case we sent a message to the Namespace object that the class belongs.
Some argue that we should sent a message to the classes parent (or super class). There are parts of the message that will not
make sense now. Don't worry one does not have to type message. The browser will do it for you.

Terms

8

Superclass

Package (parcel)

Namespace

Wednesday, September 7, 2011

Class Names & Namespaces

9

Classes are defined in a namespace

Classes in different namespaces can use the same name

Full name of a class includes namespace

Root.Smalltalk.Core.Point

Use import to use shorter names

Workspace windows import all namespaces

Wednesday, September 7, 2011

Methods

10

All methods return a value

All methods are public

Placed a method in the "private" category to tell others to treat it as private

Wednesday, September 7, 2011

Instance methods

11

Sent to instances of Classes

1 + 2
'this is a string' reverse

Wednesday, September 7, 2011

Class Methods

12

Sent to Classes

Commonly used to create instances of the class

Array new
Point x: 1 y: 3
Float pi

Wednesday, September 7, 2011

Convention

13

ClassName>>methodName

String>>reverse

Point class>>x:y:

Wednesday, September 7, 2011

14

Naming Conventions

Wednesday, September 7, 2011

Class Names

15

Use complete words, no abbreviations

First character of each word is capitalized

SmallInteger
LimitedWriteStream
LinkedMessageSet

Wednesday, September 7, 2011

Simple Superclass Name

16

Simple words

One word preferred, two at maximum

Convey class purpose in the design

Number
Collection
Magnitude
Model

Wednesday, September 7, 2011

Qualified Subclass Name

17

Unique simple name that conveys class purpose
When name is commonly used

Array
Number
String

Prepend an adjective to superclass name
Subclass is conceptually a variation on the superclass

OrderedCollection
LargeInteger
CompositeCommand

Wednesday, September 7, 2011

Class Names and Implementation

18

Avoid names that imply anything about the implementation of a class

"A proper name that is stored as a String"

ProperName
ProperNameString

"A database for Problem Reports that uses a Dictionary"

ProblemReportDatabase
ProblemReportDictionary

"Not implemented with a Set, it is a specialized Set"

SortedSet

Wednesday, September 7, 2011

Examples from Smalltalk With Style, page 5

Method Names

19

Always begins with a lowercase first letter
Don't abbreviate method names
Use uppercase letters for each word after the first

Wednesday, September 7, 2011

Method Naming Guidelines

20

Choose method names so that statements containing the method read like a
sentence

FileDescpriptor seekTo: work from: self position

Use imperative verbs and phrases for methods which perform an action

Dog
sit;
lieDown;
playDead.

aFace lookSuprised
aFace surprised

Wednesday, September 7, 2011

Examples from Smalltalk With Style, page 10-11

Method Naming Guidelines

21

Use a phrase beginning with a verb (is, has) when a method returns a boolean

isString aPerson isHungry
aPerson hungry

Use common nouns for methods which answer a specific object

anAuctionBlock nextItem
anAuctionBlock item "which item"

Wednesday, September 7, 2011

From Smalltalk With Style, page 11-12

Method Naming Guidelines

22

Methods that get/set a variable should use the same name as the variable

books
^books

getBooks
^books

books: aCollection
books := aCollection

setBooks: aCollection
books := aCollection

Wednesday, September 7, 2011

From Smalltalk With Style, page 15-16

Inheritance

23

Smalltalk supports only single inheritance

Each class has single parent class

A class inherits (or has) all
Methods defined in its parent class
Methods defined in its grandparent class
etc.
Methods defined in any ancestor class
Variables defined in any ancestor class

Wednesday, September 7, 2011

Terms

24

Parent Class
Superclass

Child class
Subclass

Wednesday, September 7, 2011

Object

25

Is the ancestor of all classes

Has no parent class

Contains important methods for all classes & objects

Wednesday, September 7, 2011

Inheritance and Name Clashes

26

Subclass can implement methods with same name as parent

This is called overriding the method

When message is sent to instance of the subclass, the subclass method is used

Subclass can not overload/override variable names

Wednesday, September 7, 2011

Actually you can force a subclass to overload a variable name. Nothing good comes from doing this.

Example

27

Parent

Child

Parent>>foo
^'foo'

Child>>foo
^'bar'

Result

| aParent aChild |

aParent := Parent new.

aChild := Child new.

aParent foo. 'foo'

aChild foo. 'bar'

Wednesday, September 7, 2011

Types of Variables

28

Temporary (Local) Variable

Named Instance Variable

Class Instance Variable

Shared Variable

Indexed Instance Variable

Wednesday, September 7, 2011

Temporary (Local) Variable

29

| a b sum |
a := 5.
b := 10.
sum := a + b.

Point>>grid: aPoint
 "Answer a new Point to the nearest rounded grid modules
 specified by aPoint."
 | newX newY |
 aPoint x = 0
 ifTrue: [newX := 0]
 ifFalse: [newX := x roundTo: aPoint x].
 aPoint y = 0
 ifTrue: [newY := 0]
 ifFalse: [newY := y roundTo: aPoint y].
 ^newX @ newY

Wednesday, September 7, 2011

Usage Convention

30

Do not use the same temporary variable name within a scope for more than
one purpose

| aRecord |
aRecord := self indexRecord.
aRecord lock: 12.
aRecord := aRecord at: 12.
self update: (aRecord at: 1) with: self newData.
aRecord unlock: 12.

Wednesday, September 7, 2011

From Smalltalk With Style, page 20. Reusing the variable here caused an error - unlocking the wrong record.

Named Instance Variable

31

Each object has its own copy of a named instance variable

Like
Protected C++ data member
Protected Java field

Accessible by
Instance methods of the class
Instance methods of subclasses of the class

Not accessible by
Methods in non-subclasses
Class methods

Wednesday, September 7, 2011

Example

32

Smalltalk defineClass: #ClassPoint
 superclass: #{Core.Object}
 indexedType: #none
 private: false
 instanceVariableNames: 'x y '
 classInstanceVariableNames: ''
 imports: ''
 category: ''

ClassPoint >>y: aNumber
 y := aNumber

ClassPoint >>x: aNumber
 x := aNumber

Wednesday, September 7, 2011

We now have two point objects. Each point object has a local copy of x and y. Values in the local copies are different.

Example

33

| a b |
a := ClassPoint new.
a
 x: 1;
 y: 4.
b := ClassPoint new.
b
 x: -1;
 y: 2.

x 1

y 4

a

x -1

y 2

b

Wednesday, September 7, 2011

We now have two point objects. Each point object has a local copy of x and y. Values in the local copies are different.

Adding Removing Instance Variables

34

Smalltalk defineClass: #ClassPoint
 superclass: #{Core.Object}
 indexedType: #none
 private: false
 instanceVariableNames: 'x y z w '
 classInstanceVariableNames: ''
 imports: ''
 category: ''

Method 1 Edit Class Definition

Wednesday, September 7, 2011

Adding/Removing Instance Variables

35

Method 2: Use Browser's Class menu

Wednesday, September 7, 2011

When removing instance variables using the menu option will check to see if you are still using the variable before removing it.

self & super

36

self
Refers to the receiver of the message (current object)

Methods referenced through self are found by:
Searching the class hierarchy starting with the class of receiver

super
Refers to the receiver of the message (current object)

Methods referenced through super are found by:
Searching the class hierarchy starting the superclass of the
class containing the method that references super

Wednesday, September 7, 2011

self and super Example

37

Parent>>name
 ^'Parent'

Child>>name
 ^'Child'

Child>>selfName
 ^self name

Child>>superName
 ^super name

GrandChild>>name
 ^'GrandChild'

Parent

Child

GrandChild

Code Output

| grandchild |

grandchild := Grandchild new.

Transcript

 show: grandchild name; Grandchild

 cr;

 show: grandchild selfName; Grandchild

 cr;

 show: grandchild superName; Parent

 cr;

Wednesday, September 7, 2011

How does this work

38

grandchild selfName

Receiver is grandchild object
Code in selfName method is ^self name
To find the method "self name" start search in Grandchild class

grandchild superName

Receiver is grandchild object
Code in superName method is ^super name
superName is implemented in Child class

To find the method "super name" start search in the superclass of Child

Wednesday, September 7, 2011

Why Super

39

Super is used when:

The child class overrides a method
Needs to call overridden method

Common Pattern

ClassPointSubclass>>initialize
super initialize.
z := 0.

Wednesday, September 7, 2011

Why doesn't super refer to parent class of the
receiver?

40

Parent>>name
 ^'Parent'

Child>>name
 ^super name , 'Child'

Parent

Child

GrandChild

| trouble |

trouble := Grandchild new.

Transcript

 show: grandchild name;

Wednesday, September 7, 2011

If super referred to the parent class of the receiver the above code would result in an infinite loop. The receiver is a GrandChild
object so the parent is Child. So in Child>>name "super name" would refer to Child>>name.

Class Methods

41

ClassPoint class>>origin
 ^self x: 0 y: 0

ClassPoint class>>x: xNumber y: yNumber
 ^(self new)
 x: xNumber;
 y: yNumber;
 yourself

ClassPoint class>>new
 ^super new initialize

center := ClassPoint origin.
center x
"Returns o"

Wednesday, September 7, 2011

new & initialize

42

ClassPoint>>initialize
 x := 0.
 y := 0.

ClassPoint class>>new
 ^super new initialize

SomeParentClass new initialize

ClassPoint new

SomeParentClass new returns a ClassPoint
object

aClassPointObject initialize

Wednesday, September 7, 2011

Initialization and Inheritance

43

Smalltalk.Core defineClass: #Parent
 superclass: #{Core.Object}
 instanceVariableNames: 'foo '

Class Method

new
 ^super new initialize

Instance Methods

initialize
 foo :=6.

foo
 ^foo

Wednesday, September 7, 2011

Initialization of Subclass

44

Smalltalk.Core defineClass: #Child
 superclass: #{Core.Parent}
 instanceVariableNames: 'bar '

How to initialize bar?

Bad Idea 1 – Use Same pattern

Child class>>new
 ^super new initialize

Child>>initialize
 bar := 2.

Child>>bar
 ^bar

Wednesday, September 7, 2011

Why bad?

45

Does not work!

| test |
test := Child new.
test foo “returns nil”

initialize is called twice

Child class>>new is not needed
Child class inherits an identical method

Wednesday, September 7, 2011

Bad Idea 2 – Subclass initializes Parent Variable

46

Child>>initialize
 bar := 2.
 foo := 6.

Why Bad?

Child class now involved in private affairs of the Parent

Changes to the Parent instance variables require changing Child

Wednesday, September 7, 2011

Solution

47

Child>>initialize
 super initialize
 bar := 2.

Child>>bar
 ^bar

Parent class>>new
 ^super new initialize

Parent>>initialize
 foo :=6.

Parent>>foo
 ^foo

Wednesday, September 7, 2011

Class Methods that Create Instances

48

Smalltalk does not have constructors like C++/Java

Use class methods to create instances

Place these class methods in "instance creation" category

Wednesday, September 7, 2011

Initial State of Instances

49

Create objects in some well-formed state

Class creation methods should:

Have parameters for initial values of instance variables or
Set default values for instance variables

Provide an instance method that:

Sets the initial values of instance variables
Place method in "initialize" or "initialize - release" category
Use the name setVariable1: value variable2: ...

Wednesday, September 7, 2011

Disabling new

50

Point new
 Does not work

Point x: 1 y: 12
This works

Point class>>new

 ^self shouldNotImplement

Implementers wanted users to specify initial value of a point

Wednesday, September 7, 2011

Actually the method is in the parent class of Point.

Class Instance Variables

51

A class has one instance of a class instance variable

Each subclass has a different instance

Accessible by
Class methods of the class
Class methods of subclasses

Wednesday, September 7, 2011

Example

52

Smalltalk.Core defineClass: #ClassInstanceVariableExample
 superclass: #{Core.Object}
 indexedType: #none
 private: false
 instanceVariableNames: ''
 classInstanceVariableNames: 'test '
 imports: ''
 category: 'As yet unclassified'

Wednesday, September 7, 2011

Adding/Removing Class Instance Variables

53

Edit the class definition directly

Method 1 Method 2

Wednesday, September 7, 2011

Example

54

Smalltalk.Core defineClass: #Parent
 superclass: #{Core.Object}
 classInstanceVariableNames: 'test '

Parent class>>test
 test isNil ifTrue:[test := 0].
 test := test + 1.
 ^test

Smalltalk.Core defineClass: #Child
 superclass: #{Core.Parent}
 classInstanceVariableNames: ''

Transcript

 print: Parent test; 1

 cr;

 print: Parent test; 2

 cr;

 print: Child test; 1

 flush

Wednesday, September 7, 2011

Lazy Initialization

55

Parent class>>test
 test isNil ifTrue:[test := 0].
 test := test + 1.
 ^test

Wednesday, September 7, 2011

More on Blocks

56

Integer>>foo
| x block |
x := 10.
block := [self + x].
^block

| x fooBlock result |
x := 5.
fooBlock := 3 foo.
result := fooBlock value

In workspace

what is the value in result?

Wednesday, September 7, 2011

Indexed Instance Variable

57

Provides slots in objects for array like indexing

Used for Arrays

I have never added indexed instance variables

I have always used existing collection classes

Wednesday, September 7, 2011

