
CS 535 Object-Oriented Programming & Design
Fall Semester, 2011

Doc 2 More OO Introduction
Sept 1 2011

Copyright ©, All rights reserved. 2011 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Wednesday, August 31, 2011

References

2

Object-Oriented Design Heuristics, Chapter 2

Designing Object-Oriented Software, Wirfs-Brock, Wilkerson, Wiener

Wednesday, August 31, 2011

Helper method

3

Method in class that
Does not access any field (data member, instance variables)
Just uses parameters

Wednesday, August 31, 2011

Data Class

4

class Point {
private int x;
private int y;

public void setX(int newX) {
x = newX;

}

public int getX() {
return x;

}

public void setY(int newY) {
y = newY;

}

public int getY() {
return y;

}

Class with
get/set methods
constructor
No or very few other methods

Wednesday, August 31, 2011

Assignment Results

5

Classes

Data Classes

Methods

Helper methods

Wednesday, August 31, 2011

Relevant Heuristics

6

2.8 A class should capture one and only one key abstraction

2.9 Keep related data and behavior in one place

2.10 Spin off nonrelated information into another class

Wednesday, August 31, 2011

java.lang.Math

7

package java.lang;
import java.util.Random;

public final strictfp class Math {
 public static double abs(double a) {
 return (a <= 0.0D) ? 0.0D - a : a;
 }

 public static double toDegrees(double angrad) {
 return angrad * 180.0 / PI;
 }

etc.

So what do we lose
doing this?

Wednesday, August 31, 2011

8

Heuristic

A method to help solve a problem, commonly informal

"rules of thumb"

Wednesday, August 31, 2011

9

Heuristic 2.3
Minimize the number of messages in the protocol of a class

"The problem with large public interfaces is that
 you can never find what you are looking for"

Is this a design issue or a tool issue?

What do you do when the class does not have the method you need?

Wednesday, August 31, 2011

2.1 All data should be hidden within its class

10

public class Foo {
public int x;
public int y;

}

public class Foo {
private int x;
private int y;

public int getX() {return x;}
public int getY() {return y;}

public void setX(int newX){
x = newX

}

public void setY(int newY){
y = newY

}
}

Wednesday, August 31, 2011

How is the version on the right better than the version on the left?

Role Versus Class

11

Is Mother a subclass of a Person class or an instance of it?

Wednesday, August 31, 2011

Inheritance verses Data Members

12

Car

Wheel

*1Car Wheel

class Car { ... }

class Wheel extends Car { ... }

Wheel is a type of car

class Car {
Wheel[] tires;
...

}

Car has wheels

Wednesday, August 31, 2011

To test for inheritance ask "Is A a type of B" if yes then A is likely to be a subclass of B. If the answer to the question "does C
have Ds" is true then it is likely that C has data members of type D.

Coupling

13

Strength of interaction between objects in system

"Unnecessary object coupling needlessly decreases the reusability of the coupled
objects"

"Unnecessary object coupling also increases the chances of system corruption
when changes are made to one or more of the coupled objects"

Design Goal

The interaction or other interrelationship between any two components at the same
level of abstraction within the system be as weak as possible

Wednesday, August 31, 2011

Types of Coupling

14

Nil Coupling
No interaction between two classes

Export Coupling
One class uses the public interface of another

Overt Coupling
One class uses implementation details of another class with permission

Covert Coupling
One class uses implementation details of another class without permission

Wednesday, August 31, 2011

There are other categories of coupling. See Wikipedia on Coupling

Cohesion

15

Degree to which the tasks performed by a single module are functionally related

Each element in the module should be essential to the module's purpose

Wednesday, August 31, 2011

Coupling & Cohesion Heuristics

16

Classes should only exhibit nil or export coupling with other classes

A class should capture one and only one key abstraction

Keep related data and behavior in one place

Spin off nonrelated information into another class

Wednesday, August 31, 2011

17

Design Process

Wednesday, August 31, 2011

18

One OO Design Process

Exploratory Phase

Who is on the team?
What are their tasks, responsibilities?
Who works with whom?

Analysis Phase

Who's related to whom?
Finding sub teams
Putting it all together

Wednesday, August 31, 2011

This is known as the Responsibility-Driven process. See the Wirfs-Brock book listed in the references.

Exploratory Phase

19

What are the goals of the system?
What must the system accomplish?
What objects are required to model the system and accomplish the goals?

Finding the initial list of classes for the system

Who is on the team?

Wednesday, August 31, 2011

Exploratory Phase

20

What does each object have to know in order to accomplish its tasks?
What steps toward accomplishing each goal is it responsible for?

Candidate list of fields and methods

What are their tasks, responsibilities?

Wednesday, August 31, 2011

Exploratory Phase

21

With whom will each object collaborate in order to accomplish each of its responsibilities?
What is the nature of the objects' collaboration?

How do the objects interact

Who works with whom?

Wednesday, August 31, 2011

Analysis Phase

22

Determine which classes are related via inheritance
Finding abstract classes
Determine class contracts

Who's related to whom?

Wednesday, August 31, 2011

Analysis Phase

23

Divide responsibilities into subsystems
Designing interfaces of subsystems and classes

Finding sub teams

Wednesday, August 31, 2011

Analysis Phase

24

Putting it all together

Construct protocols for each class
Produce a design specification for each class and subsystem
Write a design specification for each contract

Wednesday, August 31, 2011

