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Dialog Windows
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Windows used to 
Display information to the user
Request information from user

VW Dialogs are modal
User has to respond before application continues
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Warn
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Dialog warn: 'This is a simple dialog window'.

Returns: nil
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Confirm
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answer := Dialog confirm: 'Do you like Smalltalk?'.

Returns: true or false answer := Dialog 
    confirm: 'Do you like 
Smalltalk?' 
    initialAnswer: false
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Request
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answer := Dialog request: 'What is your name?'

Returns:
Text entered on "OK"
Empty string on "Cancel"
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Request Variations
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Dialog 
   request: 'What is your name?' 
   initialAnswer: 'Smith'
   

Dialog 
   request: 'What is your name?' 
   initialAnswer: 'Smith' 
   onCancel: ['Jones']
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Choose

8

Dialog
   choose: 'Are you tired yet?'
   labels: #( 'absolutely'  'sort of'  'not really')
   values: #(#yes #maybe #no)
   default: #maybe

labels: what the users sees
values: value returned when user selects corresponding label
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Choose from List
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answer := Dialog
 choose: 'Which one do you want?'
 fromList: #('first' 'second' 'third' 'fourth')
 values: #(1 2 3 4)
 lines: 8
 cancel: [#noChoice]
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This example shows how to provide the user with a list of options. Both fromList: and values: keywords need a 
SequenceableCollection or subclass as an argument. The fromList: argument is the text to be displayed on the screen. The 
values: argument contains the value returned when the user selects an item. When the user selects the K'th item in the list, the 
K'th element of the values: argument is returned. The lines: keyword sets the maximum number of items that will fit in the 
window before the user has to scroll. The cancel: keyword requires a block as an argument. When the user cancels the dialog, 
the result of running the block is returned. While the block given here just returns a value, it could do more useful things like 
close files. 



UIPainter
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Graphical Tool used to develop GUIs
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UI Painter Windows
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Palette - Widgets that we can put in the window
Unlabeled Canvas - Window we are constructing
GUI Painter Tool - Details about the widgets in our new window



Adding A Button
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Click on "button" icon

Click in the canvas
where you want the 
button
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Configuring Button
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The GUI Painter Tool will also show information about button. In the GUI Painter Tool, change the String to "Press Me" and the 
Action: to "go". Actions must be symbols, but if you enter a string the tool will change it to a symbol. Now click on the "Apply" 
button. The string is the label of the button. The action is the method that will be called when the button is pressed. 



Installing the Button
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1
2

3

5

4
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1. In the GUI Painter Tool click on the "Install..." button. 
2. Click on the magnifying glass to open the class finder. We will create a new class. 
3 Click on the "Create" tab. Click on the Examples namespace. Then enter the name of the class. tab out of the field
4 & 5. Click "OK"



Define the "go" method
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1

2
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Edit the "go" method
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1

go
 
 Dialog warn: 'Time to go'.
 ^self

2. Edit go method in browser to be:
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1. Opens a browser on the go method



Running the Example
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1
2

Thursday, September 29, 2011



Using Code to Run the Example
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ButtonExample open
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WindowSpec
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ButtonExample>>windowSpec
 "Tools.UIPainter new openOnClass: self andSelector: #windowSpec"

 <resource: #canvas>
 ^#(#{UI.FullSpec} 
  #window: 
  #(#{UI.WindowSpec} 
   #label: 'Unlabeled Canvas' 
   #bounds: #(#{Graphics.Rectangle} 556 524 1008 770 ) ) 
  #component: 
  #(#{UI.SpecCollection} 
   #collection: #(
    #(#{UI.ActionButtonSpec} 
     #layout: #(#{Graphics.Rectangle} 183 56 271 90 ) 
     #name: #goButton 
     #model: #go 
     #label: 'Press Me' 
     #defaultable: true ) ) ) )
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Window label
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1 2

3

4
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1. Select "Main window"
2. Enter Window label
3. Apply the change
4. Install the change in the ButtonExample class



Adding Text Input
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1
2
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1. Click on the "input Field" icon
2. Click in the Button Window where you would like the input field



Configuring Input Field
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count method
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ButtonExample>>count
 "This method was generated by UIDefiner.  Any edits made here
 may be lost whenever methods are automatically defined.  The
 initialization provided below may have been preempted by an
 initialize method."

 ^count isNil
  ifTrue:
   [count := '0' asValue]
  ifFalse:
   [count]
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Modify the count method to be as above. That is change "String new asValue" to " '0' asValue"



go method

24

ButtonExample>>go
 
 self count value: ((self count value asNumber) + 1) printString.
 Dialog warn: 'Time to go'.
 ^self
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The method is modified to increase the count each time the "Press Me" button is clicked on. The count is displayed in the 
window.



Window in Action
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Observer
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Subject notifies all observers when it changes

Subject

Observer1 Observer2 Observer3
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Coupling
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Measure of the interdependence among modules 

"Unnecessary object coupling needlessly decreases the reusability of the 
coupled objects "

"Unnecessary object coupling also increases the chances of system 
corruption when changes are made to one or more of the coupled objects" 
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Notify With Coupling
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Subject>>notifyObservers
observer1 myNewValue: self myValue.
observer2 displayValue: self myValue.
observer3 dispalyAndSave: self myValue.
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Keeping it Flexible
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Subject>>notifyObservers
observers do: [:each | each notify]

addObserver

removeObserver

notifyObservers

observers

Subject

getState

state

ConcreteSubject

notify

Observer
*

notify

concreteSubject

ConcreteObserver
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ValueHolder
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A subject

When value changes it notifies observers

foo asValue
Returns ValueHolder on foo

valueHolder value: newValue
Changes the value
Notifies observers
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Button Example
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ButtonExample>>count
 
 ^count isNil
  ifTrue:
   [count := '0' asValue]
  ifFalse:
   [count]

ButtonExample>>go
 
 self count value: (self count value asNumber + 1) printString.
 Dialog warn: 'Time to go'.
 ^self
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In count we create count as a value holder on the string '0'. The text field is configured to register itself as an observer on count 
and expects the value to be a string. In go we change the value of count. When that happens the text field is notified and 
updates the display.



Coupling and Transcript
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Smalltalk.CS535 defineClass: #Customer
   superclass: #{Core.Object}
   instanceVariableNames: 'name phone id '

Customer>>display
   Transcript
      show: 'Customer(';
      print: name;
      show: ', ';
      print: phone;
      show: ', ';
      print: id;
      show: ')' 

foo := Customer new.
...
foo display.

Thursday, September 29, 2011



Separate display device from Customer
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Customer>>printOn: aStream
   aStream
      print: 'Customer(';
      print: name;
      print: ', ';
      print: phone;
      print: ', ';
      print: id;
      print: ')' 

foo := Customer new.
...
Transcript 

show: foo printString.

bar := 'bar' asFilename writeStream.
bar

nextPutAll: foo printString
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By separating the output device from the class we gain flexibility on where the output goes.



GUIs & Coupling
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Domain information
Customer records
Inventory
Names
Reports
Addresses

Application/GUI information
Menus
Error Messages
Help information
Labels

Keep domain and application information separate 

Application information changes faster 
Often there is multiple view of domain information 
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Model-View-Controller (MVC)
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Model

Encapsulates 

Domain information
Core data and functionality

Independent of 

Specific output representations
Input behavior

View

Display data to the user 

Obtains data from the model 

Multiple views of the model are possible 
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Controller
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Handles input 

Mouse movements and clicks
Keyboard events

Each view has it's own controller 

Programmers commonly don't see controllers 
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Button Example
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Model

ButtonExample

View

Created dynamically from
window spec

Controller

Hidden
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Issues with ButtonExample
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Strings rather than numbers

Dealing with ValueHolders rather than with values

View code/logic in domain code
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Well there really is no domain objects as the example is so simple, but the issue needs to be addressed.



Configuring the Widget for Numbers
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Using Numbers in Button Example
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ButtonExample>>count

 ^count isNil
  ifTrue:
   [count := 0 asValue]
  ifFalse:
   [count]

ButtonExample>>go
 
 self count value: (self count value  + 1) .
 Dialog warn: 'Hi'.
 ^self
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Adapters
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ButtonExample Adapter
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ButtonExample>>countAdapter
 
 | countAdapter |
 countAdapter := AspectAdaptor subject: self.
 countAdapter
  forAspect: #count;
  subjectSendsUpdates: true.
 ^countAdapter

ButtonExample>>go
 
 count := count + 1.
 self changed: #count.
 Dialog warn: 'Time to go'.
 ^self

ButtonExample>>initialize
 
 count := 0

ButtonExample>>count: anInteger
 
 count := anInteger

ButtonExample>>count

 ^count
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The text widget wants a ValueHolder, we want to have an integer. So we use an adapter that looks like a ValueHolder to the text 
widget. However when it needs to access the value it uses the count and count: methods.



Using a Number rather than a String
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View & Domain Logic Mixed
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ButtonExample
Simple example
Designed to show how to use a widget

 
It handles both view logic and domain logic
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Simple Domain Class
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Smalltalk defineClass: #Counter
 superclass: #{Core.Object}
 instanceVariableNames: 'count '

Counter class>>new
 ^super new initialize 

Counter>>count
 ^count

Counter>>count: anInteger
 count := anInteger

Counter>>increment
 self count: count + 1 

Counter>>initialize
 count := 0 

Thursday, September 29, 2011



Using the Domain Object
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Smalltalk defineClass: #ButtonExample
 superclass: #{UI.ApplicationModel}
 instanceVariableNames: 'count '

initialize
 count := Counter new

countAdapter
 | countAdapter |
 countAdapter := AspectAdaptor subject: count.
 countAdapter
  forAspect: #count;
  subjectSendsUpdates: true.
 ^countAdapter

go
 count increment.
 count changed: #count.
 Dialog warn: 'Time to go'.
 ^self
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Issue - Who changes count?
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ButtonExample class controls when count changes

ButtonExample can then inform window of changes
Keeps Counter class independent of GUI
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Issue - Who changes count?
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AnApplicationModel

What if other objects can change count?

ButtonExample will not be able to inform window of changes
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When we have multiple domain objects a message to one may result in changes to one or more objects. If these objects 
contribute to the display it may not be possible for the application model to notify the view how to update itself correctly.



Domain Objects Updated
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Smalltalk defineClass: #Counter
 superclass: #{Core.Object}
 instanceVariableNames: 'count '

Counter class>>new
 ^super new initialize 

Counter>>count
 ^count

Counter>>count: anInteger
 count := anInteger

Counter>>increment
 self count: count + 1.
   self changed: #count

Counter>>initialize
 count := 0 
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ButtonExample Updated

50

Smalltalk defineClass: #ButtonExample
 superclass: #{UI.ApplicationModel}
 instanceVariableNames: 'count '

initialize
 count := Counter new

countAdapter
 | countAdapter |
 countAdapter := AspectAdaptor subject: count.
 countAdapter
  forAspect: #count;
  subjectSendsUpdates: true.
 ^countAdapter

go
 count increment.
 Dialog warn: 'Time to go'.
 ^self
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Validating Input
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ButtonExample>>validateNumber: aController
 | entry |
 entry := aController editValue.
 ^entry >= 0
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Text Editor Example
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Text Editor
widget
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Text Editor Example
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TextExample>>text
 ^text isNil
  ifTrue:
   [text := 'Hi Mom' asValue]
  ifFalse:
   [text]

TextExample>>add
 self text 

value: self text value , '\Add more text\' withCRs
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