
CS 535 Object-Oriented Programming & Design
Fall Semester, 2011

Doc 12 VW GUI
Sep 29 2011

Copyright ©, All rights reserved. 2011 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, September 29, 2011

References

2

Pattern-Oriented Software Architecture, Buschmann et al., 1996

VisualWorks GUI Developer's Guide, GUIDevGuide.pdf in the docs directory of the VW distribution

Thursday, September 29, 2011

Dialog Windows

3

Windows used to
Display information to the user
Request information from user

VW Dialogs are modal
User has to respond before application continues

Thursday, September 29, 2011

Warn

4

Dialog warn: 'This is a simple dialog window'.

Returns: nil

Thursday, September 29, 2011

Confirm

5

answer := Dialog confirm: 'Do you like Smalltalk?'.

Returns: true or false answer := Dialog
 confirm: 'Do you like
Smalltalk?'
 initialAnswer: false

Thursday, September 29, 2011

Request

6

answer := Dialog request: 'What is your name?'

Returns:
Text entered on "OK"
Empty string on "Cancel"

Thursday, September 29, 2011

Request Variations

7

Dialog
 request: 'What is your name?'
 initialAnswer: 'Smith'

Dialog
 request: 'What is your name?'
 initialAnswer: 'Smith'
 onCancel: ['Jones']

Thursday, September 29, 2011

Choose

8

Dialog
 choose: 'Are you tired yet?'
 labels: #('absolutely' 'sort of' 'not really')
 values: #(#yes #maybe #no)
 default: #maybe

labels: what the users sees
values: value returned when user selects corresponding label

Thursday, September 29, 2011

Choose from List

9

answer := Dialog
 choose: 'Which one do you want?'
 fromList: #('first' 'second' 'third' 'fourth')
 values: #(1 2 3 4)
 lines: 8
 cancel: [#noChoice]

Thursday, September 29, 2011

This example shows how to provide the user with a list of options. Both fromList: and values: keywords need a
SequenceableCollection or subclass as an argument. The fromList: argument is the text to be displayed on the screen. The
values: argument contains the value returned when the user selects an item. When the user selects the K'th item in the list, the
K'th element of the values: argument is returned. The lines: keyword sets the maximum number of items that will fit in the
window before the user has to scroll. The cancel: keyword requires a block as an argument. When the user cancels the dialog,
the result of running the block is returned. While the block given here just returns a value, it could do more useful things like
close files.

UIPainter

10

Graphical Tool used to develop GUIs

Thursday, September 29, 2011

UI Painter Windows

11

Thursday, September 29, 2011

Palette - Widgets that we can put in the window
Unlabeled Canvas - Window we are constructing
GUI Painter Tool - Details about the widgets in our new window

Adding A Button

12

Click on "button" icon

Click in the canvas
where you want the
button

Thursday, September 29, 2011

Configuring Button

13

Thursday, September 29, 2011

The GUI Painter Tool will also show information about button. In the GUI Painter Tool, change the String to "Press Me" and the
Action: to "go". Actions must be symbols, but if you enter a string the tool will change it to a symbol. Now click on the "Apply"
button. The string is the label of the button. The action is the method that will be called when the button is pressed.

Installing the Button

14

1
2

3

5

4

Thursday, September 29, 2011

1. In the GUI Painter Tool click on the "Install..." button.
2. Click on the magnifying glass to open the class finder. We will create a new class.
3 Click on the "Create" tab. Click on the Examples namespace. Then enter the name of the class. tab out of the field
4 & 5. Click "OK"

Define the "go" method

15

1

2

Thursday, September 29, 2011

Edit the "go" method

16

1

go

 Dialog warn: 'Time to go'.
 ^self

2. Edit go method in browser to be:

Thursday, September 29, 2011

1. Opens a browser on the go method

Running the Example

17

1
2

Thursday, September 29, 2011

Using Code to Run the Example

18

ButtonExample open

Thursday, September 29, 2011

WindowSpec

19

ButtonExample>>windowSpec
 "Tools.UIPainter new openOnClass: self andSelector: #windowSpec"

 <resource: #canvas>
 ^#(#{UI.FullSpec}
 #window:
 #(#{UI.WindowSpec}
 #label: 'Unlabeled Canvas'
 #bounds: #(#{Graphics.Rectangle} 556 524 1008 770))
 #component:
 #(#{UI.SpecCollection}
 #collection: #(
 #(#{UI.ActionButtonSpec}
 #layout: #(#{Graphics.Rectangle} 183 56 271 90)
 #name: #goButton
 #model: #go
 #label: 'Press Me'
 #defaultable: true))))

Thursday, September 29, 2011

Window label

20

1 2

3

4

Thursday, September 29, 2011

1. Select "Main window"
2. Enter Window label
3. Apply the change
4. Install the change in the ButtonExample class

Adding Text Input

21

1
2

Thursday, September 29, 2011

1. Click on the "input Field" icon
2. Click in the Button Window where you would like the input field

Configuring Input Field

22

1

2

3

4

3

5

Thursday, September 29, 2011

count method

23

ButtonExample>>count
 "This method was generated by UIDefiner. Any edits made here
 may be lost whenever methods are automatically defined. The
 initialization provided below may have been preempted by an
 initialize method."

 ^count isNil
 ifTrue:
 [count := '0' asValue]
 ifFalse:
 [count]

Thursday, September 29, 2011

Modify the count method to be as above. That is change "String new asValue" to " '0' asValue"

go method

24

ButtonExample>>go

 self count value: ((self count value asNumber) + 1) printString.
 Dialog warn: 'Time to go'.
 ^self

Thursday, September 29, 2011

The method is modified to increase the count each time the "Press Me" button is clicked on. The count is displayed in the
window.

Window in Action

25

Thursday, September 29, 2011

Observer

26

Subject notifies all observers when it changes

Subject

Observer1 Observer2 Observer3

Thursday, September 29, 2011

Coupling

27

Measure of the interdependence among modules

"Unnecessary object coupling needlessly decreases the reusability of the
coupled objects "

"Unnecessary object coupling also increases the chances of system
corruption when changes are made to one or more of the coupled objects"

Thursday, September 29, 2011

Notify With Coupling

28

Subject>>notifyObservers
observer1 myNewValue: self myValue.
observer2 displayValue: self myValue.
observer3 dispalyAndSave: self myValue.

Thursday, September 29, 2011

Keeping it Flexible

29

Subject>>notifyObservers
observers do: [:each | each notify]

addObserver

removeObserver

notifyObservers

observers

Subject

getState

state

ConcreteSubject

notify

Observer
*

notify

concreteSubject

ConcreteObserver

Thursday, September 29, 2011

ValueHolder

30

A subject

When value changes it notifies observers

foo asValue
Returns ValueHolder on foo

valueHolder value: newValue
Changes the value
Notifies observers

Thursday, September 29, 2011

Button Example

31

ButtonExample>>count

 ^count isNil
 ifTrue:
 [count := '0' asValue]
 ifFalse:
 [count]

ButtonExample>>go

 self count value: (self count value asNumber + 1) printString.
 Dialog warn: 'Time to go'.
 ^self

Thursday, September 29, 2011

In count we create count as a value holder on the string '0'. The text field is configured to register itself as an observer on count
and expects the value to be a string. In go we change the value of count. When that happens the text field is notified and
updates the display.

Coupling and Transcript

32

Smalltalk.CS535 defineClass: #Customer
 superclass: #{Core.Object}
 instanceVariableNames: 'name phone id '

Customer>>display
 Transcript
 show: 'Customer(';
 print: name;
 show: ', ';
 print: phone;
 show: ', ';
 print: id;
 show: ')'

foo := Customer new.
...
foo display.

Thursday, September 29, 2011

Separate display device from Customer

33

Customer>>printOn: aStream
 aStream
 print: 'Customer(';
 print: name;
 print: ', ';
 print: phone;
 print: ', ';
 print: id;
 print: ')'

foo := Customer new.
...
Transcript

show: foo printString.

bar := 'bar' asFilename writeStream.
bar

nextPutAll: foo printString

Thursday, September 29, 2011

By separating the output device from the class we gain flexibility on where the output goes.

GUIs & Coupling

34

Domain information
Customer records
Inventory
Names
Reports
Addresses

Application/GUI information
Menus
Error Messages
Help information
Labels

Keep domain and application information separate

Application information changes faster
Often there is multiple view of domain information

Thursday, September 29, 2011

Model-View-Controller (MVC)

35

Model

Encapsulates

Domain information
Core data and functionality

Independent of

Specific output representations
Input behavior

View

Display data to the user

Obtains data from the model

Multiple views of the model are possible

Thursday, September 29, 2011

Controller

36

Handles input

Mouse movements and clicks
Keyboard events

Each view has it's own controller

Programmers commonly don't see controllers

Thursday, September 29, 2011

Button Example

37

Model

ButtonExample

View

Created dynamically from
window spec

Controller

Hidden

Thursday, September 29, 2011

Issues with ButtonExample

38

Strings rather than numbers

Dealing with ValueHolders rather than with values

View code/logic in domain code

Thursday, September 29, 2011

Well there really is no domain objects as the example is so simple, but the issue needs to be addressed.

Configuring the Widget for Numbers

39

Thursday, September 29, 2011

Using Numbers in Button Example

40

ButtonExample>>count

 ^count isNil
 ifTrue:
 [count := 0 asValue]
 ifFalse:
 [count]

ButtonExample>>go

 self count value: (self count value + 1) .
 Dialog warn: 'Hi'.
 ^self

Thursday, September 29, 2011

Adapters

41

Thursday, September 29, 2011

ButtonExample Adapter

42

ButtonExample>>countAdapter

 | countAdapter |
 countAdapter := AspectAdaptor subject: self.
 countAdapter
 forAspect: #count;
 subjectSendsUpdates: true.
 ^countAdapter

ButtonExample>>go

 count := count + 1.
 self changed: #count.
 Dialog warn: 'Time to go'.
 ^self

ButtonExample>>initialize

 count := 0

ButtonExample>>count: anInteger

 count := anInteger

ButtonExample>>count

 ^count

Thursday, September 29, 2011

The text widget wants a ValueHolder, we want to have an integer. So we use an adapter that looks like a ValueHolder to the text
widget. However when it needs to access the value it uses the count and count: methods.

Using a Number rather than a String

43

Thursday, September 29, 2011

View & Domain Logic Mixed

44

ButtonExample
Simple example
Designed to show how to use a widget

It handles both view logic and domain logic

Thursday, September 29, 2011

Simple Domain Class

45

Smalltalk defineClass: #Counter
 superclass: #{Core.Object}
 instanceVariableNames: 'count '

Counter class>>new
 ^super new initialize

Counter>>count
 ^count

Counter>>count: anInteger
 count := anInteger

Counter>>increment
 self count: count + 1

Counter>>initialize
 count := 0

Thursday, September 29, 2011

Using the Domain Object

46

Smalltalk defineClass: #ButtonExample
 superclass: #{UI.ApplicationModel}
 instanceVariableNames: 'count '

initialize
 count := Counter new

countAdapter
 | countAdapter |
 countAdapter := AspectAdaptor subject: count.
 countAdapter
 forAspect: #count;
 subjectSendsUpdates: true.
 ^countAdapter

go
 count increment.
 count changed: #count.
 Dialog warn: 'Time to go'.
 ^self

Thursday, September 29, 2011

Issue - Who changes count?

47

ButtonExample class controls when count changes

ButtonExample can then inform window of changes
Keeps Counter class independent of GUI

Thursday, September 29, 2011

Issue - Who changes count?

48

AnApplicationModel

What if other objects can change count?

ButtonExample will not be able to inform window of changes

Thursday, September 29, 2011

When we have multiple domain objects a message to one may result in changes to one or more objects. If these objects
contribute to the display it may not be possible for the application model to notify the view how to update itself correctly.

Domain Objects Updated

49

Smalltalk defineClass: #Counter
 superclass: #{Core.Object}
 instanceVariableNames: 'count '

Counter class>>new
 ^super new initialize

Counter>>count
 ^count

Counter>>count: anInteger
 count := anInteger

Counter>>increment
 self count: count + 1.
 self changed: #count

Counter>>initialize
 count := 0

Thursday, September 29, 2011

ButtonExample Updated

50

Smalltalk defineClass: #ButtonExample
 superclass: #{UI.ApplicationModel}
 instanceVariableNames: 'count '

initialize
 count := Counter new

countAdapter
 | countAdapter |
 countAdapter := AspectAdaptor subject: count.
 countAdapter
 forAspect: #count;
 subjectSendsUpdates: true.
 ^countAdapter

go
 count increment.
 Dialog warn: 'Time to go'.
 ^self

Thursday, September 29, 2011

Validating Input

51

ButtonExample>>validateNumber: aController
 | entry |
 entry := aController editValue.
 ^entry >= 0

Thursday, September 29, 2011

Text Editor Example

52

Text Editor
widget

Thursday, September 29, 2011

Text Editor Example

53

TextExample>>text
 ^text isNil
 ifTrue:
 [text := 'Hi Mom' asValue]
 ifFalse:
 [text]

TextExample>>add
 self text

value: self text value , '\Add more text\' withCRs

Thursday, September 29, 2011

