
CS 535 OO Programming & Design
Fall Semester, 2013

Assignment 5
© 2013, All Rights Reserved, SDSU & Roger Whitney

 San Diego State University -- This page last updated 10/31/13

Assignment 5
Due Nov 16, 11:59 pm

1. (25 points - 15 working/meets requirements, 5 style/design, 5 unit tests) Banks do millions if
not billions of transactions a day. Any round-off in calculations can amount to a lot of
money. So all calculations done on a bank account balance have to be exact. To ensure
that this is the case create a Currency class. The bank account balances are to be currency
objects, not numbers. The currency class will do addition and subtraction without floating
point round off. You need to be able to create a currency object from a string and a number.
You need to be able to add/subtract currency objects and add/subtract numbers to/from
currency objects. Currency objects need to be comparable. That is they must implement
the methods in the Magnitude class. Once created a currency object should not be able to
change its value. Currency objects need to print themselves out as dollars (see below). An
example of some of the functionality of the currency class can be seen in the following test
case.

| a b c d sum |
a := Currency fromString: '1.00'.
b := Currency fromNumber: 2.12.
sum := Currency fromNumber: 2.12.
c := a + b.
self assert: sum = c.
d := c - 1.00.
self assert: d = b.
self assert: a printString = '$1.00'.

You might find it convenient to implement convenience methods so the above test can be
rewritten as:

| a b c d sum |
a := '1.00' asCurrency.
b := 2.12 asCurrency.
sum := 2.12 asCurrency.
c := a + b.
self assert: sum = c.
d := c - 1.00.
self assert: d = b.
self assert: a printString = '$1.00'.

2. (15 points - 5 working/meets requirements, 5 style/design, 5 unit tests) Our bank has two
types of customers, normal and preferred. Preferred customers get overdraft protection.
When normal customers try to withdraw more money than is in their account the transac-
tion is cancelled and the customer is charged a $5.00 fee. The fee could make the account
balance go negative. Preferred customers are allowed withdraw $1,000.00 more than their
account holds without penalty. Any transaction that makes the balance of a preferred cus-
tomers balance become less than -$1,000.00 is cancelled and the customer is charged a
$3.00 fee.

3. (45 points - 25 working/meets requirements, 15 style/design, 5 unit tests) Money is a serious
business for banks. They need to keep record of all transactions so they can show were
money came from and where it went. When you deposit a check into your account the
money is put on hold until the the check clears. Until the check clears your account has two
balances. First is the total balance. That is the sum of all income minus the sum of all ex-
penditures. Second is the available balance. That is the total amount minus all funds that
are on hold. Depending on their origin checks take differing amounts of time to clear.
Sometimes checks bounce. That is the account they are written on does not have enough
money in the account when the check reaches the bank. When this happens the account is
deducted a fee (see problem 2) and the check is revoked. Revoking a check means that
the amount of the check is deducted from the account it was deposited into.

Add/modify the following instance methods to your BankAccount class. For testing pur-
poses the names of the following methods must be as they are given below. The name of
your class must be BankAccount. See the end of the assignment description for information
about Durations.

balance
! Returns the current total balance in the account now

balanceIn: aDuration
! Returns the total balance in the account in aDuration amount of time from now. aDu-
ration can be negative.

availableBalance
! Returns the current available balance in the account now

availableBalanceIn aDuration
! Returns the current available balance in the account in aDuration amount of time
from now. aDuration can be negative.

transactionsFrom: aFilename
! Processes the transactions in the given file on the current account. That is reads the
file and then changes the balance of the account based on the transactions in the file.

Your BankAccount class needs the following class method. For testing purposes the name
of the following method must be as given below.

fromFile: aFilename
! Reads the transaction data from the given file and returns BankAccount created us-
ing that data. Filename is a filename object for a file with transactions in it.

The input file with transactions contains four types of transactions: NewAccount, Deposit,
Withdrawal, Cancel. Each transaction is on a single line. Each item of a transaction is sepa-
rated by a tab. All transactions start with the following:

transactionID transactionTimestamp transactionType

Where

transactionID is an integer. Transaction IDs are unique.

transactionTimestamp is a time stamp giving the time and date of the transaction. The
format of a timestamp is

mm.dd.yyyy hh:mm

For example 10.15.2013 17:30 is the timestamp for October 15, 2013 5:30:00 PM. The
year and date are separated by a space. See below for information about timestamps.

transactionType is one of NewAccount, Deposit, Withdrawal, Cancel

There can be only one NewAccount transaction in the transaction file, but there does not
have to be one in the file. If there is one in the file it has to be the first transaction. The for-
mat of NewAccount transaction is:

transactionID transactionTimestamp NewAccount name customerType amount

Where "name" can have multiple parts, each separated by spaces. "customerType" is ei-
ther "Normal" or "Preferred". "amount" is a dollar amount like: "$25.00". A sample NewAc-
count transaction is:

1253! 10.15.2013 17:30! NewAccount!Roger Whitney! Normal $250.13

The format of the Cancel transaction is:

transactionID transactionTimestamp Cancel transactionIDToCancel

Where "transactionIDToCancel" is the transaction id of the transaction to cancel. This is
primarily used for checks that have bounced. The transaction that is canceled can be either
a deposit or a withdrawal. A sample Cancel transaction is:

182126! 10.15.2013 17:30! Cancel! 17433

The format of the Withdrawal transaction is:

transactionID transactionTimestamp Withdrawal amount

Where "amount" is a dollar amount like: "$25.00". A sample Withdrawal transaction is:

1534! 10.17.2013 19:31! Withdrawal! $13.15

The format of the Deposit transaction starts with:

transactionID transactionTimestamp Deposit type

"type" is either "Cash" or "Check". If type is "Check" then the full transaction is:

transactionID transactionTimestamp Deposit Check holdDurationInDays amount

Where "amount" is a dollar amount like: "$25.00". "holdDurationInDays" is an integer indi-
cating how many days the deposit will be on hold. A sample "Deposit Check" transaction is:

7362! 10.30.2013 19:31! Deposit! Check ! 3! $13.15

If type is "Cash" then the full transaction is:

transactionID transactionTimestamp Deposit Cash amount

Where "amount" is a dollar amount like: "$25.00". A sample "Deposit Cash" transaction is:

7362! 10.30.2013 19:31! Deposit! Cash !$13.15

A sample transaction file may look like:

1253! 10.15.2013 17:30! NewAccount!Roger Whitney! Normal ! $250.13
1334! 10.17.2013 15:31! Deposit! Check ! 4! $13.15
2001! 10.21.2013 13:59! Deposit! Check ! 3! $13.15
1982! 10.20.2013 19:31! Deposit! Cash !$13.15
2010! 10.21.2013 03:30! Cancel! 1334
4103! 10.29.2013 19:29! Withdrawal! $13.15

Note that the transactions in the file are not necessarily in order by transaction ID or by
timestamp.

Durations and Timestamps

You will find Timestamps and Durations useful in this assignment. Duration represents an in-
terval of time - days, hours, minutes, seconds. One can creates a duration by sending the fol-
lowing messages to numbers: days, hours, minutes, seconds. Here are some examples:

3 days
1.3 days
1.5 hours

Timestamps represent a date and time, for example October 16, 2013 2:00:06 PM. There are
methods in the Timestamp class. You can compare Timestamp objects with <, >, =, >=, <=.
You can also add durations to Timestamps to get another Timestamp object. For example:

Timestamp now + 3 days + 12 minutes

One can also create Timestamps from strings. We will use the format month.date.year
hour:minute. For example:

Timestamp readFromDateAndTime: ('10.15.2013 17:30' readStream)

Will give us a Timestamp object for October 15, 2013 5:30:00 PM.

How to turn in the assignment

In your image create Package called Assignment5. Make sure that all the code for this as-
signment is in your Assignment5 package. When you add a method to existing Smalltalk
classes only include in your package the methods that you write. You will upload your Assign-
ment5 package to your store account.

