
CS 596 Functional Programming and Design
Fall Semester, 2014

Doc 8 Assignment 2 Comments
Sep 27, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, September 30, 14

2

(defn sdsu-nth
 [list-items index]
 (loop [counter index original-list list-items]
 (if (zero? counter)
 (first original-list)
 (recur (dec counter) (rest original-list))
)
)
)

(defn sdsu-nth
 [coll index]
 (loop [counter index
 tail coll]
 (if (zero? counter)
 (first tail)
 (recur (dec counter) (rest tail)))))

Formatting
Names

Tuesday, September 30, 14

Place all trailing parentheses on a single line

3

;; good; single line
(when something
 (something-else))

;; bad; distinct lines
(when something
 (something-else)
)

Tuesday, September 30, 14

Arguments - Types, Roles, Names

4

(defn sdsu-nth
 [list-items index]

sdsu-nth(ArrayList elements, int position)

Need to provide expected type and role

Dynamically types languages - often just give expected type

Clojure & Collection arguments

coll
xs

Tuesday, September 30, 14

5

(defn sdsu-reverse
 ([col] (sdsu-reverse col []))
 ([col1 col2]
 (if (empty? col1)
 col2
 (recur (rest col1) (cons (first col1) col2)))))

col1 col2
What is the difference?

(defn sdsu-reverse
 ([coll] (sdsu-reverse coll []))
 ([coll result]
 (if (empty? coll)
 result
 (recur (rest coll) (cons (first coll) result)))))

Tuesday, September 30, 14

6

(defn sdsu-nth
[l n]
(loop [my-seq l down-count n]
(if (= down-count 0)
(first my-seq)
(recur (next my-seq) (- down-count 1)))))

(defn sdsu-nth
 [coll n]
 (loop [tail coll down-count n]
 (if (zero? down-count)
 (first tail)
 (recur (next tail) (dec down-count)))))

What is l?
Formatting

Tuesday, September 30, 14

inc, dec, pos?, neg?, zero?

7

Use (inc x) instead of (+ x 1)

Use (pos? x) instead of (> x 0)

Tuesday, September 30, 14

 Use two spaces per indentation level

8

No hard tabs
;; good
(when something
 (something-else))

;; bad - four spaces
(when something
 (something-else))

;; Horror
(when something
(something-else))

Tuesday, September 30, 14

9

(defn sdsu-no-dup
 [x]
 (reduce #(if(= (last %1) %2) %1 (concat %1 (list %2))) '() x))

(defn sdsu-no-dup
 [x]
 (let [check-dups (fn [past-xs x]

 (if (= (last past-xs) x)
 past-xs
 (concat past-xs (list x))))]

 (reduce check-dups '() x)))

Can you read & understand this?

Better but ugly

Tuesday, September 30, 14

Function literals - one form only

10

;; good
(fn [x]
 (println x)
 (* x 2))

;; bad (you need an explicit do form)
#(do
 (println %)
 (* % 2))

Tuesday, September 30, 14

11

(defn- remove-dups
 [past-xs x]
 (let [last-x (last past-xs)]
 (if (= last-x x)
 past-xs
 (conj past-xs x))))

(defn sdsu-no-dup
 [xs]
 (reduce remove-dups [] xs))

Better function name

Don't nest function - too long

Use let to aid understanding

Use vector for efficiency

Tuesday, September 30, 14

Better Version

12

(defn- same-as-last?
 [xs x]
 (= (last xs) x))

(defn- conj-no-dups
 "Add x to end of xs if x not a duplicate"
 [past-xs x]
 (if (same-as-last? past-xs x)
 past-xs
 (conj past-xs x)))

(defn sdsu-no-dup
 "Remove consectuive duplicates from xs"
 [xs]
 (reduce conj-no-dups [] xs))

Lot more text than orginial

But one can understand this version

Tuesday, September 30, 14

13

(defn sdsu-no-dup
 [sequence]
 (loop [counter 1 dup-list sequence no-dup-list (list)]
 (if (= counter (count sequence))
 (concat no-dup-list (list (last dup-list)))
 (let [left (first dup-list)
 right (first (next dup-list))]
 (if (= left right)
 (recur (inc counter) (next dup-list) no-dup-list)
 (recur (inc counter) (next dup-list) (concat no-dup-list (list left))))))))

Hard to read the loop arguments

Tuesday, September 30, 14

Formatting loop variables

14

(defn sdsu-no-dup
 [sequence]
 (loop [counter 1
 dup-list sequence
 no-dup-list (list)]
 (if (= counter (count sequence))
 (concat no-dup-list (list (last dup-list)))
 (let [left (first dup-list)
 right (first (next dup-list))]
 (if (= left right)
 (recur (inc counter) (next dup-list) no-dup-list)
 (recur (inc counter) (next dup-list) (concat no-dup-list (list left))))))))

Why do we need counter?
End when counter = (count sequence)
At same time dup-list has one element

Tuesday, September 30, 14

Stop when dup-list has one element

15

(defn sdsu-no-dup
 [sequence]
 (loop [dup-list sequence
 no-dup-list (list)]
 (if (= 1 (count dup-list))
 (concat no-dup-list (list (last dup-list)))
 (let [left (first dup-list)
 right (first (next dup-list))]
 (if (= left right)
 (recur (next dup-list) no-dup-list)
 (recur (next dup-list) (concat no-dup-list (list left))))))))

lists are linked lists
Expensive to add at end
Need extra code to do so
Vectors make it easier

Tuesday, September 30, 14

Use Vector

16

(defn sdsu-no-dup
 [sequence]
 (loop [dup-xs sequence
 no-dup-xs []]
 (if (= 1 (count dup-xs))
 (concat no-dup-xs dup-xs)
 (let [left (first dup-xs)
 right (first (next dup-xs))]
 (if (= left right)
 (recur (next dup-xs) no-dup-xs)
 (recur (next dup-xs) (conj no-dup-xs left)))))))

left, right? in a list
Not a tree

Tuesday, September 30, 14

Better Names

17

(defn sdsu-no-dup
 [sequence]
 (loop [dup-xs sequence
 no-dup-xs []]
 (if (= 1 (count dup-xs))
 (concat no-dup-xs dup-xs)
 (let [first-element (first dup-xs)
 second-element (first (next dup-xs))
 rest-elements (next dup-xs)]
 (if (= first-element second-element)
 (recur rest-elements no-dup-xs)
 (recur rest-elements (conj no-dup-xs first-element)))))))

Tuesday, September 30, 14

Formatting

18

(defn sdsu-dup
 [col]
 (mapcat #(repeat 2 %)
 col))

(defn sdsu-dup
 [coll]
 (mapcat #(repeat 2 %) coll))

Tuesday, September 30, 14

19

(defn sdsu-nth [c x] (first (drop x c))

(defn sdsu-nth [coll x] (first (drop x coll))

What is c?

Tuesday, September 30, 14

20

(defn r-sdsu-nth [a b]
 (cons a (lazy-seq (r-sdsu-nth b (+ b a)))))

What is a? b?

Tuesday, September 30, 14

21

(declare helper-pack)
(defn sdsu-pack
 [input-list]
 (helper-pack (reverse input-list) nil nil))

(defn helper-pack
 [input-list output-list duplicate-list]
 (if (empty? input-list)
 output-list
 (if (= (first input-list) (first (rest input-list)))
 (helper-pack (rest input-list) output-list (cons (first input-list) duplicate-list))
 (helper-pack (rest input-list) (conj output-list (cons (first input-list) duplicate-list)) nil))))

Tuesday, September 30, 14

22

(declare helper-pack)
(defn sdsu-pack
 [input-list]
 (helper-pack (reverse input-list) nil nil))

(defn helper-pack
 [input-list output-list duplicate-list]
 (if (empty? input-list)
 output-list
 (let [first-input (first input-list)
 rest-input (rest input-list)]
 (if (= first-input (first rest-input))
 (helper-pack rest-input output-list (cons first-input duplicate-list))
 (helper-pack rest-input (conj output-list (cons first-input duplicate-list)) nil))))

Better but still needs work

Tuesday, September 30, 14

23

(defn sdsu-dup [n]
 (reduce concat (#(take 2(repeat %)) n)))

(defn sdsu-dup [collection]
 (reduce concat (#(take 2 (repeat %)) collection)))

n?
spacing

Tuesday, September 30, 14

Spaces and ()

24

;; good
(foo (bar baz) quux)

;; bad
(foo(bar baz)quux)
(foo (bar baz) quux)

space before (, [{

No space after (, [, {

If text follows),], } add space

Tuesday, September 30, 14

25

(def sdsu-reverse (fn [coll]
 (loop [[r & more :as all] (seq coll)
 acc ' ()]
 (if all (recur more (cons r acc))acc))))

Spacing

Tuesday, September 30, 14

26

(defn r-sdsu-nth [c x] (when-not (neg? x)
 (if (zero? x)
 (first c)
 (r-sdsu-nth (rest c) (- x 1)))))

(defn r-sdsu-nth
 [coll x]
 (when-not (neg? x)
 (if (zero? x)
 (first coll)
 (r-sdsu-nth (rest coll) (dec x)))))

Formatting

Tuesday, September 30, 14

27

(defn sdsu-dup
 [n]
 (sort (concat n n)))

(sdsu-dup [2 1 0])

What is the output?
n?

Tuesday, September 30, 14

28

(defn sdsu-nth
 [input-sequence n]
 (if (or (< n 0) (>= n (count input-sequence)))
 "ArrayIndexOutOfBoundsException"
 (if (< n (count input-sequence))
 (loop [count 0 updated-list input-sequence]
 (if (= count n)
 (first updated-list)
 (recur (inc count) (next updated-list))
))
 "Value not found.")))

Tuesday, September 30, 14

Returning strings as Exceptions/Errors

29

(if (or (< n 0) (>= n (count input-sequence)))
 "ArrayIndexOutOfBoundsException"

Programs don't print to standard out

How does program know string is not valid return value

How does caller know what strings are error messages

Tuesday, September 30, 14

pre and post conditions over checks

30

;; good
(defn foo [x]
 {:pre [(pos? x)]}
 (bar x))

;; bad
(defn foo [x]
 (if (pos? x)
 (bar x)
 (throw (IllegalArgumentException "x must be a positive number!")))

Tuesday, September 30, 14

Example of :post

31

(defn slope [p1 p2]
 {:pre [(not= p1 p2) (vector? p1) (vector? p2)]
 :post [(float? %)]}
 (/ (- (p2 1) (p1 1))
 (- (p2 0) (p1 0))))

Excerpt From: Michael Fogus Chris Houser. “The Joy of Clojure, Second Edition.”

Tuesday, September 30, 14

Using Pre-conditions

32

(defn sdsu-nth
 [input-sequence n]
 {:pre [(>= n 0) (< n (count input-sequence))]}
 (if (< n (count input-sequence))
 (loop [count 0 updated-list input-sequence]
 (if (= count n)
 (first updated-list)
 (recur (inc count) (next updated-list))))
 "Value not found."))

Note how far the else part is from the first if statement

Tuesday, September 30, 14

Reordering the if for readablity

33

(defn sdsu-nth
 [input-sequence n]
 {:pre [(>= n 0) (< n (count input-sequence))]}
 (if (>= n (count input-sequence))
 "Value not found."
 (loop [count 0 updated-list input-sequence]
 (if (= count n)
 (first updated-list)
 (recur (inc count) (next updated-list))))))

But first if is always false

Tuesday, September 30, 14

Removing first if

34

(defn sdsu-nth
 [input-sequence n]
 {:pre [(>= n 0) (< n (count input-sequence))]}

 (loop [count 0
 updated-list input-sequence]
 (if (= count n)
 (first updated-list)
 (recur (inc count) (next updated-list)))))

Tuesday, September 30, 14

Count down

35

(defn sdsu-nth
 [input-sequence n]
 {:pre [(>= n 0) (< n (count input-sequence))]}

 (loop [updated-n n
 updated-list input-sequence]
 (if (zero? updated-n)
 (first updated-list)
 (recur (dec updated-n) (next updated-list)))))

Tuesday, September 30, 14

36

(declare generate)
(defn sdsu-no-dup
 [coll]

 (if(= (count coll) 0)
 "empty list"
 (generate coll '())
)

)

(defn generate
 [coll newlist]

;; checking if newlist is empty,
 ;;(if (= (count newlist) 0)
(if (empty? newlist)

 ;;if true then will add first item from collection to newlist and calling generate function recursively
with rest of data and newlist
 (generate (rest coll) (conj newlist (first coll)))

 ;; if false then will check if collection is not yet empty then will compare last item of newlist and
first item of collection, if same will skip that
 ;;data and call generate function recursively

 (if(not= (count coll) 0)
 (if (= (first newlist) (first coll))
 (generate (rest coll) newlist)

 ;; if last item of newlist is not same as first item of collection then will append that data
to new list and call generat function again
 (generate (rest coll) (cons (first coll) newlist)))

 (reverse newlist)

)

)
)

Formatting
Over commented

Tuesday, September 30, 14

37

(declare generate)
(defn sdsu-no-dup
 [coll]
 (if (empty? coll)
 "empty list"
 (generate coll '())))

(defn generate
 [coll newlist]
 (if (empty? newlist)
 ;;if true then will add first item from collection to newlist and calling generate function recursively
with rest of data and newlist
 (generate (rest coll) (conj newlist (first coll)))

 ;; if false then will check if collection is not yet empty then will compare last item of newlist and
first item of collection, if same will skip that
 ;;data and call generate function recursively

 (if(not= (count coll) 0)
 (if (= (first newlist) (first coll))
 (generate (rest coll) newlist)

 ;; if last item of newlist is not same as first item of collection then will append that data
to new list and call generat function again
 (generate (rest coll) (cons (first coll) newlist)))

 (reverse newlist)

)

)
)

Tuesday, September 30, 14

38

(if (empty? newlist)
 ;;if true then will add first item from collection to newlist and calling
 ;;generate function recursively with rest of data and newlist
 (generate (rest coll) (conj newlist (first coll)))

(if (empty? newlist)
 (generate (rest coll) (conj newlist (first coll)))

(if (empty? newlist)
 ;;add first item from coll to newlist
 ;;call generate with rest of data and newlist
 (generate (rest coll) (conj newlist (first coll)))

Less wordy comments

Do the comments add anything?

Tuesday, September 30, 14

39

(declare generate)
(defn sdsu-no-dup
 [coll]
 (if (empty? coll)
 "empty list"
 (generate coll '())))

(defn generate
 [coll newlist]
 (if (empty? newlist)
 (generate (rest coll) (conj newlist (first coll)))
 (if (not= (count coll) 0)
 (if (= (first newlist) (first coll))
 (generate (rest coll) newlist)
 (generate (rest coll) (cons (first coll) newlist)))
 (reverse newlist))))

Finally we can see the code

Tuesday, September 30, 14

40

(declare generate)
(defn sdsu-no-dup
 [coll]
 (if (empty? coll)
 "empty list"
 (generate coll '())))

(defn generate
 [coll newlist]
 (if (empty? newlist)
 (generate (rest coll) (conj newlist (first coll)))
 (if-not (empty? coll)
 (if (= (first newlist) (first coll))
 (generate (rest coll) newlist)
 (generate (rest coll) (cons (first coll) newlist)))
 (reverse newlist))))

(if-not (empty? coll)
is easier to read
Conveys meaning better than
(if (not= (count coll) 0)

Tuesday, September 30, 14

41

(defn get-rev
 [search_list,index, new_list]

 (if (= index (- (count search_list) 1))

 new_list

 (get-rev search_list (+ index 1) (cons (nth search_list (+ index 1)) new_list))

)
)

(defn get-rev
 [search-list, index, new-list]
 (if (= index (- (count search-list) 1))
 new-list
 (get-rev search-list (inc index) (cons (nth search-list (inc index)) new-list))))

Formatting

Tuesday, September 30, 14

42

Google knows every thing

Tuesday, September 30, 14

43

(defn sdsu-nth [n seq1]
 [(seq? seq1)]
 (if (= 0 n)
 (first seq1)
 ((dotimes [i n])
 (next seq1))
 (next seq1)))

(defn sdsu-dup
 [a]
 (reduce #(conj %1 %2 %2) [] a))

(defn sdsu-no-dup
 [a]
 (reduce #(if-not (= (last %1) %2)
 (conj %1 %2)
 %1)
 []
 a))

Tuesday, September 30, 14

Some Problems for Practice

44

http://www.4clojure.com

https://projecteuler.net

http://clojure.roboloco.net/?page_id=381

Clojure solutions

4 clojure problems

Project Euler

Tuesday, September 30, 14

45

Some Solutions

Tuesday, September 30, 14

46

Problem 1

(defn sdsu-nth
 [coll n]
 (when (> n -1)
 (first (nthnext coll n))))

(defn sdsu-nth-2
 [coll n]
 (when (< n (count coll))
 (last (take (inc n) coll))))

(defn sdsu-nth-3
 [list stopvalue]
 (when (> stopvalue -1)
 (first (drop stopvalue list))))

Tuesday, September 30, 14

Problem 1

47

(defn sdsu-nth-4
 [list n]
 (first (keep-indexed #(when (= n %1) %2) list)))

(defn sdsu-nth-5
 [coll n]
 ((apply comp
 (cons first (repeat n rest)))coll))

Tuesday, September 30, 14

Problem 2

48

(defn r-sdsu-nth
 [list n]
 (when (<= 0 n)
 (if (zero? n)
 (first list)
 (r-sdsu-nth (rest list) (dec n)))))

(defn r-sdsu-nth-2
 [list n]
 (cond
 (< n 0) nil
 (= n 0) (first list)
 :else (r-sdsu-nth (rest list) (dec n))))

Tuesday, September 30, 14

Problem 3

49

(defn sdsu-reverse
 [x]
 (if(empty? x)
 []
 (conj (sdsu-reverse (rest x)) (first x))))

Tuesday, September 30, 14

Problem 4

50

(defn sdsu-dup
 [coll]
 (mapcat #(repeat 2 %) coll))

(defn sdsu-dup
 [coll]
 (reduce #(conj %1 %2 %2) [] coll))

Tuesday, September 30, 14

51

(defn sdsu-no-dup
 [xs]
 (mapcat #(take 1 %) (partition-by identity xs)))

(defn sdsu-no-dup
 [xs]
 (reduce #(if(= (last %1) %2) %1 (concat %1 (list %2))) '() xs))

Tuesday, September 30, 14

52

(defn sdsu-pack
 [xs]
 (partition-by identity xs))

Tuesday, September 30, 14

53

Style

Tuesday, September 30, 14

54

Clojure Style Guide

https://github.com/bbatsov/clojure-style-guide

Tuesday, September 30, 14

Vertically align function arguments

55

;; good
(filter even?
 (range 1 10))

;; bad
(filter even?
 (range 1 10))

Tuesday, September 30, 14

Vertically align let bindings and map keywords

56

;; good
(let [thing1 "some stuff"
 thing2 "other stuff"]
 {:thing1 thing1
 :thing2 thing2})

;; bad
(let [thing1 "some stuff"
 thing2 "other stuff"]
 {:thing1 thing1
 :thing2 thing2})

Tuesday, September 30, 14

57

;; good
(defn foo
 [x]
 (bar x))

;; good
(defn foo [x]
 (bar x))

;; bad
(defn foo
 [x] (bar x))

Tuesday, September 30, 14

Small Function

58

;; good
(defn foo [x]
 (bar x))

;; good for a small function body
(defn foo [x] (bar x))

;; good for multi-arity functions
(defn foo
 ([x] (bar x))
 ([x y]
 (if (predicate? x)
 (bar x)
 (baz x))))

;; bad
(defn foo
 [x] (if (predicate? x)
 (bar x)
 (baz x)))

Tuesday, September 30, 14

Commas & sequential collection literals

59

;; good
[1 2 3]
(1 2 3)

;; bad
[1, 2, 3]
(1, 2, 3)

Tuesday, September 30, 14

commas & line breaks - map literals readability

60

;; good
{:name "Bruce Wayne" :alter-ego "Batman"}

;; good and arguably a bit more readable
{:name "Bruce Wayne"
 :alter-ego "Batman"}

;; good and arguably more compact
{:name "Bruce Wayne", :alter-ego "Batman"}

Tuesday, September 30, 14

 Don't define vars inside functions

61

;; very bad
(defn foo []
 (def x 5)
 ...)

Tuesday, September 30, 14

Use if-not instead of (if (not ...) ...)

62

;; good
(if-not pred
 (foo))

;; bad
(if (not pred)
 (foo))

Tuesday, September 30, 14

Use ->, ->> to avoid heavy nesting

63

;; good
(-> [1 2 3]
 reverse
 (conj 4)
 prn)

;; not as good
(prn (conj (reverse [1 2 3])
 4))

;; good
(->> (range 1 10)
 (filter even?)
 (map (partial * 2)))

;; not as good
(map (partial * 2)
 (filter even? (range 1 10)))

Tuesday, September 30, 14

