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(defn sdsu-nth
  [list-items index]
    (loop [counter index original-list list-items]
      (if (zero? counter)
        (first original-list)
        (recur (dec counter) (rest original-list))
      )
    )
)

(defn sdsu-nth
  [coll index]
    (loop [counter index 
              tail coll]
      (if (zero? counter)
        (first tail)
        (recur (dec counter) (rest tail)))))

Formatting
Names
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Place all trailing parentheses on a single line
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;; good; single line
(when something
  (something-else))

;; bad; distinct lines
(when something
  (something-else)
)
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Arguments - Types, Roles, Names
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(defn sdsu-nth
  [list-items index]

sdsu-nth(ArrayList elements, int position)

Need to provide expected type and role

Dynamically types languages - often just give expected type

Clojure & Collection arguments

coll
xs
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(defn sdsu-reverse
  ([col] (sdsu-reverse col []))
  ([col1 col2]
   (if (empty? col1)
     col2
     (recur (rest col1) (cons (first col1) col2)))))

col1 col2
What is the difference?

(defn sdsu-reverse
  ([coll] (sdsu-reverse coll []))
  ([coll result]
   (if (empty? coll)
     result
     (recur (rest coll) (cons (first coll) result)))))
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(defn sdsu-nth
[l n]
(loop [my-seq l down-count n]
(if (= down-count 0)
(first my-seq)
(recur (next my-seq) (- down-count 1)))))

(defn sdsu-nth
  [coll n]
  (loop [tail coll down-count n]
    (if (zero? down-count)
      (first tail)
      (recur (next tail) (dec down-count)))))

What is l?
Formatting
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inc, dec, pos?, neg?, zero?
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Use (inc x) instead of (+ x 1)

Use (pos? x) instead of (> x 0)
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 Use two spaces per indentation level
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No hard tabs
;; good
(when something
  (something-else))

;; bad - four spaces
(when something
    (something-else))

;; Horror
(when something
(something-else))
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(defn sdsu-no-dup
  [x]
  (reduce #(if(= (last %1) %2) %1 (concat %1 (list %2))) '() x))

(defn sdsu-no-dup
  [x]
  (let [check-dups (fn [past-xs x]

                     (if (= (last past-xs) x) 
                       past-xs 
                       (concat past-xs (list x))))] 

    (reduce check-dups '() x)))

Can you read & understand this?

Better but ugly
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Function literals - one form only
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;; good
(fn [x]
  (println x)
  (* x 2))

;; bad (you need an explicit do form)
#(do 
     (println %)
     (* % 2))
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(defn- remove-dups
  [past-xs x]
  (let [last-x (last past-xs)]
    (if (= last-x x) 
      past-xs 
      (conj past-xs x))))

(defn sdsu-no-dup
  [xs] 
  (reduce remove-dups [] xs))

Better function name

Don't nest function - too long

Use let to aid understanding

Use vector for efficiency 
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Better Version
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(defn- same-as-last?
  [xs x]
  (= (last xs) x))

(defn- conj-no-dups
  "Add x to end of xs if x not a duplicate"
  [past-xs x]
  (if (same-as-last? past-xs x) 
      past-xs 
      (conj past-xs x)))

(defn sdsu-no-dup
  "Remove consectuive duplicates from xs"
  [xs] 
  (reduce conj-no-dups [] xs))

Lot more text than orginial

But one can understand this version
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(defn sdsu-no-dup
  [sequence]
  (loop [counter 1 dup-list sequence no-dup-list (list)]
    (if (= counter (count sequence))
      (concat no-dup-list (list (last dup-list)))
      (let [left (first dup-list)
            right (first (next dup-list))]
        (if (= left right)
          (recur (inc counter) (next dup-list) no-dup-list)
          (recur (inc counter) (next dup-list) (concat no-dup-list (list left))))))))

Hard to read the loop arguments
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Formatting loop variables
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(defn sdsu-no-dup
  [sequence]
  (loop [counter 1 
            dup-list sequence 
            no-dup-list (list)]
    (if (= counter (count sequence))
      (concat no-dup-list (list (last dup-list)))
      (let [left (first dup-list)
            right (first (next dup-list))]
        (if (= left right)
          (recur (inc counter) (next dup-list) no-dup-list)
          (recur (inc counter) (next dup-list) (concat no-dup-list (list left))))))))

Why do we need counter?
End when counter = (count sequence)
At same time dup-list has one element
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Stop when dup-list has one element
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(defn sdsu-no-dup
  [sequence]
  (loop [dup-list sequence 
            no-dup-list (list)]
    (if (= 1 (count dup-list))
      (concat no-dup-list (list (last dup-list)))
      (let [left (first dup-list)
            right (first (next dup-list))]
        (if (= left right)
          (recur (next dup-list) no-dup-list)
          (recur (next dup-list) (concat no-dup-list (list left)))))))) 

lists are linked lists
Expensive to add at end
Need extra code to do so
Vectors make it easier
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Use Vector
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(defn sdsu-no-dup
  [sequence]
  (loop [dup-xs sequence 
            no-dup-xs [] ]
    (if (= 1 (count dup-xs))
      (concat no-dup-xs dup-xs)
      (let [left (first dup-xs)
            right (first (next dup-xs))]
        (if (= left right)
          (recur (next dup-xs) no-dup-xs)
          (recur (next dup-xs) (conj no-dup-xs left))))))) 

left, right? in a list 
Not a tree

Tuesday, September 30, 14



Better Names
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(defn sdsu-no-dup
  [sequence]
  (loop [dup-xs sequence 
            no-dup-xs []]
    (if (= 1 (count dup-xs))
      (concat no-dup-xs dup-xs)
      (let [first-element (first dup-xs)
            second-element (first (next dup-xs))
            rest-elements (next dup-xs)]
        (if (= first-element second-element)
          (recur rest-elements no-dup-xs)
          (recur rest-elements (conj no-dup-xs first-element)))))))
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Formatting
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(defn sdsu-dup
  [col]
  (mapcat #(repeat 2 %)
  col))

(defn sdsu-dup
  [coll]
  (mapcat #(repeat 2 %) coll))
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(defn sdsu-nth [c x] (first (drop x c))

(defn sdsu-nth [coll x] (first (drop x coll))

What is c?
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(defn r-sdsu-nth [a b]
  (cons a (lazy-seq (r-sdsu-nth b (+ b a)))))

What is a? b?
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(declare helper-pack)
(defn sdsu-pack
  [input-list]
  (helper-pack (reverse input-list) nil nil))

(defn helper-pack
  [input-list output-list duplicate-list]
  (if (empty? input-list)
    output-list
    (if (= (first input-list) (first (rest input-list)))
      (helper-pack (rest input-list) output-list (cons (first input-list) duplicate-list))
      (helper-pack (rest input-list) (conj output-list (cons (first input-list) duplicate-list)) nil))))
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(declare helper-pack)
(defn sdsu-pack
  [input-list]
  (helper-pack (reverse input-list) nil nil))

(defn helper-pack
  [input-list output-list duplicate-list]
  (if (empty? input-list)
    output-list
    (let [first-input (first input-list)
           rest-input (rest input-list)]
      (if (= first-input (first rest-input))
      (helper-pack rest-input output-list (cons first-input duplicate-list))
      (helper-pack rest-input (conj output-list (cons first-input duplicate-list)) nil))))

Better but still needs work
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( defn sdsu-dup [n]
  (reduce concat (#(take 2(repeat %)) n)))

(defn sdsu-dup [collection]
  (reduce concat (#(take 2 (repeat %)) collection)))

n?
spacing
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Spaces and ( )
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;; good
(foo (bar baz) quux)

;; bad
(foo(bar baz)quux)
(foo ( bar baz ) quux)

space before (, [ {

No space after (, [, {

If text follows ), ], } add space
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(def sdsu-reverse (fn [coll]
  (loop [[ r & more :as all] (seq coll)
           acc ' ()]
     ( if all (recur more (cons r acc))acc))))

Spacing
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(defn r-sdsu-nth [c x] (when-not (neg? x)
                         (if (zero? x)
                           (first c)
                           (r-sdsu-nth (rest c) (- x 1)))))

(defn r-sdsu-nth 
  [coll x] 
  (when-not (neg? x)
     (if (zero? x)
        (first coll)
        (r-sdsu-nth (rest coll) (dec x)))))

Formatting
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(defn sdsu-dup
    [n]
   (sort (concat n n)))

(sdsu-dup [2  1   0])

What is the output?
n?
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(defn sdsu-nth 
  [input-sequence n]
  (if (or (< n 0) (>= n (count input-sequence)))
    "ArrayIndexOutOfBoundsException"
    (if (< n (count input-sequence))
      (loop [count 0 updated-list input-sequence]
        (if (= count n)
          (first updated-list)
          (recur (inc count) (next updated-list))
          ))
      "Value not found.")))

Tuesday, September 30, 14



Returning strings as Exceptions/Errors
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(if (or (< n 0) (>= n (count input-sequence)))
    "ArrayIndexOutOfBoundsException"

Programs don't print to standard out

How does program know string is not valid return value

How does caller know what strings are error messages
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pre and post conditions over checks 
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;; good
(defn foo [x]
  {:pre [(pos? x)]}
  (bar x))

;; bad
(defn foo [x]
  (if (pos? x)
    (bar x)
    (throw (IllegalArgumentException "x must be a positive number!")))
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Example of :post
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(defn slope [p1 p2]
  {:pre [(not= p1 p2) (vector? p1) (vector? p2)]
   :post [(float? %)]}
  (/ (- (p2 1) (p1 1))
     (- (p2 0) (p1 0))))

Excerpt From: Michael Fogus Chris Houser. “The Joy of Clojure, Second Edition.”
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Using Pre-conditions
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(defn sdsu-nth 
  [input-sequence n]
  {:pre [(>= n 0) (< n (count input-sequence))]}
  (if (< n (count input-sequence))
    (loop [count 0 updated-list input-sequence]
      (if (= count n)
        (first updated-list)
        (recur (inc count) (next updated-list))))
   "Value not found."))

Note how far the else part is from the first if statement
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Reordering the if for readablity
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(defn sdsu-nth 
  [input-sequence n]
  {:pre [(>= n 0) (< n (count input-sequence))]}
  (if (>= n (count input-sequence))
    "Value not found."
    (loop [count 0 updated-list input-sequence]
      (if (= count n)
        (first updated-list)
        (recur (inc count) (next updated-list))))))

But first if is always false
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Removing first if
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(defn sdsu-nth 
  [input-sequence n]
  {:pre [(>= n 0) (< n (count input-sequence))]}

  (loop [count 0 
            updated-list input-sequence]
    (if (= count n)
      (first updated-list)
      (recur (inc count) (next updated-list)))))
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Count down
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(defn sdsu-nth 
  [input-sequence n]
  {:pre [(>= n 0) (< n (count input-sequence))]}
 
  (loop [updated-n n 
         updated-list input-sequence]
    (if (zero? updated-n)
      (first updated-list)
      (recur (dec updated-n) (next updated-list)))))
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(declare generate)
(defn sdsu-no-dup
 [coll]

  (if(= (count coll) 0)
    "empty list"
    (generate coll '())
   )

)

(defn generate
 [coll newlist]

;; checking if newlist is empty,
 ;;(if (= (count newlist) 0)
(if (empty? newlist)

    ;;if true then will add first item from collection to newlist and calling generate function recursively 
with rest of data and newlist
       (generate (rest coll) (conj newlist (first coll)))

   ;; if false then will check if collection is not yet empty then will compare last item of newlist and 
first item of collection, if same will skip that
   ;;data and call generate function recursively

       (if(not= (count coll) 0)
              (if (= (first newlist) (first coll))
                   (generate (rest coll) newlist)

                 ;; if last item of newlist is not same as first item of collection then will append that data 
to new list and call generat function again
                 (generate (rest coll) (cons  (first coll) newlist)))

               (reverse newlist)

         )

 )
)

Formatting
Over commented
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(declare generate)
(defn sdsu-no-dup
   [coll]
   (if (empty? coll)
    "empty list"
    (generate coll '())))

(defn generate
 [coll newlist]
 (if (empty? newlist)
    ;;if true then will add first item from collection to newlist and calling generate function recursively 
with rest of data and newlist
       (generate (rest coll) (conj newlist (first coll)))

   ;; if false then will check if collection is not yet empty then will compare last item of newlist and 
first item of collection, if same will skip that
   ;;data and call generate function recursively

       (if(not= (count coll) 0)
              (if (= (first newlist) (first coll))
                   (generate (rest coll) newlist)

                 ;; if last item of newlist is not same as first item of collection then will append that data 
to new list and call generat function again
                 (generate (rest coll) (cons  (first coll) newlist)))

               (reverse newlist)

         )

 )
)
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(if (empty? newlist)
    ;;if true then will add first item from collection to newlist and calling 
    ;;generate function recursively with rest of data and newlist
     (generate (rest coll) (conj newlist (first coll)))

(if (empty? newlist)
  (generate (rest coll) (conj newlist (first coll)))

(if (empty? newlist)
    ;;add first item from coll to newlist 
    ;;call generate with rest of data and newlist
     (generate (rest coll) (conj newlist (first coll)))

Less wordy comments

Do the comments add anything?
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(declare generate)
(defn sdsu-no-dup
   [coll]
   (if (empty? coll)
    "empty list"
    (generate coll '())))

(defn generate
 [coll newlist]
 (if (empty? newlist)
     (generate (rest coll) (conj newlist (first coll)))
     (if (not= (count coll) 0)
        (if (= (first newlist) (first coll))
            (generate (rest coll) newlist)
            (generate (rest coll) (cons  (first coll) newlist)))
         (reverse newlist))))

Finally we can see the code
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(declare generate)
(defn sdsu-no-dup
   [coll]
   (if (empty? coll)
    "empty list"
    (generate coll '())))

(defn generate
 [coll newlist]
 (if (empty? newlist)
     (generate (rest coll) (conj newlist (first coll)))
     (if-not (empty? coll)
        (if (= (first newlist) (first coll))
            (generate (rest coll) newlist)
            (generate (rest coll) (cons  (first coll) newlist)))
         (reverse newlist))))

(if-not (empty? coll)
is easier to read
Conveys meaning better than
(if (not= (count coll) 0)
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(defn get-rev
  [search_list,index, new_list]

       (if (= index (- (count search_list) 1) )

            new_list

            (get-rev search_list (+ index 1) (cons  (nth search_list (+ index 1)) new_list))

        )
)

(defn get-rev
  [search-list, index, new-list]
  (if (= index (- (count search-list) 1) )
     new-list
     (get-rev search-list (inc index) (cons  (nth search-list (inc index)) new-list))))

Formatting
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Google knows every thing

Tuesday, September 30, 14



43

(defn sdsu-nth [n seq1]
   [(seq? seq1)]
     (if (= 0 n)
        (first seq1)
        ((dotimes [i n])
         (next seq1))
       (next seq1)))

(defn sdsu-dup
  [a]
  (reduce #(conj %1 %2 %2 ) [] a ))

(defn sdsu-no-dup
  [a]
  (reduce #(if-not (= (last %1) %2)
             (conj %1 %2)
             %1)
          []
          a))
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Some Problems for Practice
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http://www.4clojure.com

https://projecteuler.net

http://clojure.roboloco.net/?page_id=381

Clojure solutions

4 clojure problems

Project Euler
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Some Solutions

Tuesday, September 30, 14



46

Problem 1

(defn sdsu-nth
  [coll n]
  (when (> n -1)
    (first (nthnext coll n))))

(defn sdsu-nth-2
  [coll n]
  (when (< n (count coll))
    (last (take (inc n) coll))))

(defn sdsu-nth-3
  [list stopvalue]
  (when (> stopvalue -1)
    (first (drop stopvalue list))))
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Problem 1
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(defn sdsu-nth-4
  [list n ]
  (first (keep-indexed #(when (= n %1) %2) list)))

(defn sdsu-nth-5
   [coll n]
    ((apply comp
         (cons first (repeat n rest)))coll))
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Problem 2

48

(defn r-sdsu-nth
  [list n]
  (when (<= 0 n)
    (if (zero? n)
      (first list)
      (r-sdsu-nth (rest list) (dec n)))))

(defn r-sdsu-nth-2
  [list n]
  (cond
    (< n 0) nil
    (= n 0) (first list)
    :else (r-sdsu-nth (rest list) (dec n))))
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Problem 3
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(defn sdsu-reverse
  [x]
  (if(empty? x) 
    []
    (conj (sdsu-reverse (rest x)) (first x))))
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Problem 4
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(defn sdsu-dup
  [coll]
  (mapcat #(repeat 2 %)  coll))

(defn sdsu-dup
  [coll]
  (reduce #(conj %1 %2 %2) [] coll))
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(defn sdsu-no-dup 
  [xs]
  (mapcat #(take 1 %) (partition-by identity xs)))

(defn sdsu-no-dup
  [xs]
  (reduce #(if(= (last %1) %2) %1 (concat %1 (list %2))) '() xs))
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(defn sdsu-pack 
  [xs]
  (partition-by identity xs))
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Style
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Clojure Style Guide

https://github.com/bbatsov/clojure-style-guide
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Vertically align function arguments
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;; good
(filter even?
        (range 1 10))

;; bad
(filter even?
  (range 1 10))
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Vertically align let bindings and map keywords
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;; good
(let [thing1 "some stuff"
      thing2 "other stuff"]
  {:thing1 thing1
   :thing2 thing2})

;; bad
(let [thing1 "some stuff"
  thing2 "other stuff"]
  {:thing1 thing1
  :thing2 thing2})
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;; good
(defn foo
  [x]
  (bar x))

;; good
(defn foo [x]
  (bar x))

;; bad
(defn foo
  [x] (bar x))
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Small Function
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;; good
(defn foo [x]
  (bar x))

;; good for a small function body
(defn foo [x] (bar x))

;; good for multi-arity functions
(defn foo
  ([x] (bar x))
  ([x y]
    (if (predicate? x)
      (bar x)
      (baz x))))

;; bad
(defn foo
  [x] (if (predicate? x)
        (bar x)
        (baz x)))

Tuesday, September 30, 14



Commas & sequential collection literals
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;; good
[1 2 3]
(1 2 3)

;; bad
[1, 2, 3]
(1, 2, 3)
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commas & line breaks - map literals readability
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;; good
{:name "Bruce Wayne" :alter-ego "Batman"}

;; good and arguably a bit more readable
{:name "Bruce Wayne"
 :alter-ego "Batman"}

;; good and arguably more compact
{:name "Bruce Wayne", :alter-ego "Batman"}
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 Don't define vars inside functions
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;; very bad
(defn foo []
  (def x 5)
  ...)
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Use if-not instead of (if (not ...) ...)
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;; good
(if-not pred
  (foo))

;; bad
(if (not pred)
  (foo))
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Use ->, ->> to avoid heavy nesting
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;; good
(-> [1 2 3]
    reverse
    (conj 4)
    prn)

;; not as good
(prn (conj (reverse [1 2 3])
           4))

;; good
(->> (range 1 10)
     (filter even?)
     (map (partial * 2)))

;; not as good
(map (partial * 2)
     (filter even? (range 1 10)))
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