
CS 596 Functional Programming and Design
Fall Semester, 2014

Doc 9 Some Higher Order Functions, Examples
Oct 2, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, October 2, 14

Common Operations on Collections

2

Combine elements into one result
sum all elements,
min

Transform each element
add 10 to each element

Select all elements that meet a condition
all elements greater than 10

Select one elements that meet a condition
First element greater than 10

Group elements by some criteria
group strings by size

Pass each element as argument to function
Print each element to standard out

Thursday, October 2, 14

Map, Reduce, Filter

3

Higher order functions

Very important

Map
Apply a function to each element of a collection, return resulting collection
Ruby - collect, map
Smalltalk - collect

Filter
Returns elements of collection that make

Reduce
Applies function

Thursday, October 2, 14

Reduce

4

(reduce + [1 2 3 4]) 10

(reductions + [1 2 3 4]) (1 3 6 10)

(reduce small-add [1 2 3 4 5 6]) 6

(defn small-add
 [subresult x]
 (if (< x 4)
 (+ subresult x)
 (reduced subresult)))

Thursday, October 2, 14

Map

5

Map - the noun

{:a 1 :c 10}

Map - the verb

(map inc [1 2 3]) (2 3 4)

Thursday, October 2, 14

Map - the Verb

6

map Returns lazy sequence
mapv Returns vector
pmap Done in parallel, semi-lazy
map-indexed f gets index & element

(map f coll)
(map f c1 c2)
(map f c1 c2 c3)
(map f c1 c2 c3 & colls)

(map inc [1 2 3]) (2 3 4)

(map + [1 2 3] [4 5 6]) (5 7 9)

(map + [1 2 3 4 5] [4 5 6]) (5 7 9)

(map inc #{1 2 3}) (2 4 3)

(map + [1 2 3] #{4 5 6}) (5 8 8)

Thursday, October 2, 14

map-indexed

7

(map-indexed vector [:a :b :c]) ([0 :a] [1 :b] [2 :c])

Thursday, October 2, 14

pmap

8

Distributes work among cores, not separate processors/machines

Operation needs to be computationally intense

(time (doall (map inc (range 10000)))) "Elapsed time: 4.73 msecs"

(time (doall (pmap inc (range 10000)))) "Elapsed time: 529.905 msecs"

Thursday, October 2, 14

Parallel Example

9

(defn long-running-job [n]
 (Thread/sleep 3000) ; wait for 3 seconds
 (+ n 10))

(time (doall (map long-running-job (range 4))))

(time (doall (pmap long-running-job (range 4))))

12.005 secs

3.01 secs

(time (doall (map long-running-job (range 8)))) 24.005 secs

(time (doall (pmap long-running-job (range 8)))) 3.01 secs

(time (doall (pmap long-running-job (range 64)))) 6.01 secs

Thursday, October 2, 14

Since the job is not doing any real work pmap performs very well. It can use multiple threads on one processor and the threads
can all perform at the same time

Slightly More Realistic Example

10

(defn long-running-job
 [n]
 (reduce + (take 10000000 (iterate #(Math/sin %) n))))

(time (doall (map long-running-job (range N))))
(time (doall (pmap long-running-job (range N))))

N map time secs pmap time secs

2 7.5 4.8

4 15.3 10.1

2.13 GHz Intel Core 2 Duo

Thursday, October 2, 14

Partition Size

11

One can control the size of data send to each thread

partition-all

Thursday, October 2, 14

filter

12

(filter even? [1 2 3 4 5 6 7])

(first (filter even? [1 2 3 4 5 6 7]))

(filter #{3 5 9 12} [1 2 3 4 5 6 7])

(2 4 6)

2

(3 5)

Thursday, October 2, 14

Specialized filter functions

13

(take-while neg? [-2 -1 0 -1 -2 3]) (-2 -1)

(take-while neg? [-2 -1 0 1 2 3]) (-2 -1)

(drop-while neg? [-1 -2 -6 -7 1 2 3 4 -5 -6 0 1]) (1 2 3 4 -5 -6 0 1)

(split-with #(< % 3) [1 2 3 4 5 1]) [(1 2) (3 4 5 1)]

[(take-while pred coll) (drop-while pred coll)](split-with pred coll)

Thursday, October 2, 14

Sample Problem

14

Given a list of numbers
Square each number
Sum all the squares

double[] numbers = read the values
double sum = 0;

for (int k = 0; k < numbers.length; k++) {
double item = numbers[k];
sum =+ item*item

}

(reduce + (map #(%*%) numbers))

(def numbers [1 2 3 4 5])

for (number in numbers)
sum =+ number * number

How What

Thursday, October 2, 14

Map-Reduce Google

15

Inspired by functional programming map & reduce

Distributes data randomly across clusters

Map - filters & sorts

Reduce - summary operation

Google no longer uses Map-Reduce framework

Hadoop - open source implementation

Thursday, October 2, 14

Pig-Pen

16

Map-Reduce in Clojure

Developed and used at Netflix

Write map-reduce queries as programs

Process massive amounts of data on clusters of machines

http://tinyurl.com/l7l9dgt

Article

Thursday, October 2, 14

When Processing Collections Consider Using

17

map
reduce
filter
for
some
repeatedly
sort-by
keep
take-while
drop-while

Thursday, October 2, 14

Common Operations on Collections

18

Combine elements into one result

Transform each element

Select all elements that meet a condition

Select one elements that meet a condition

Group elements by some criteria

Pass each element as argument to function

reduce

map

for, doseq

filter, take-while, drop-while

(first (filter condition xs))

group-by, partition-by
partition

Thursday, October 2, 14

Evaluating Lazy Sequences

19

(map println [1 2 3]) No output

(dorun (map println [1 2 3])) Output, evaluates one at a time
Returns nil

(doall (map println [1 2 3])) Output, evaluates one at a time
Returns head,
All elements are in memory at once

Thursday, October 2, 14

Evaluating Lazy Sequences

20

(for [x [1 2 3]]
 (println x))

no output

(doseq [x [1 2 3]]
 (println x))

Output

Thursday, October 2, 14

21

Examples

Thursday, October 2, 14

22

Conway's Game of Life

Any live cell with fewer than two live neighbours dies, as if caused by under-
population

Any live cell with two or three live neighbours lives on to the next generation

Any live cell with more than three live neighbours dies, as if by overcrowding

Any dead cell with exactly three live neighbours becomes a live cell, as if by
reproduction

Thursday, October 2, 14

Representing the Data

23

X

Y
(0,0)

Each live cell represented
In Clojure by a vector

[x, y]
[10,2]

[10,2]

Thursday, October 2, 14

Finding all the neighbors of a point

24

(defn neighbors
 "Determines all the neighbors of a given coordinate"
 [[x y]]
 (for [dx [-1 0 1]
 dy [-1 0 1]
 :when (not= 0 dx dy)]
 [(+ dx x) (+ dy y)]))

(neighbors [1 1]) ([0 0] [0 1] [0 2] [1 0] [1 2] [2 0] [2 1] [2 2])

([-1 -1] [-1 0] [-1 1] [0 -1] [0 1] [1 -1] [1 0] [1 1])(neighbors [0 0])

Thursday, October 2, 14

Source http://programmablelife.blogspot.com/2012/08/conways-game-of-life-in-clojure.html

Stepper

25

(defn stepper
 [neighbors birth? survive?]
 (fn [cells]
 (set (for [[loc n] (frequencies (mapcat neighbors cells))
 :when (if (cells loc)

(survive? n)
(birth? n))]

 loc))))

Thursday, October 2, 14

How stepper Works

26

(mapcat neighbors cells)
[[2 3] [2 2]]

(frequencies (mapcat neighbors cells))

{[2 2] 1, [2 3] 1, [3 3] 2, [1 1] 1, [3 4] 1, [1 4] 1,
[1 3] 2, [2 4] 1, [3 1] 1, [2 1] 1, [1 2] 2, [3 2] 2}

([1 2] [1 3] [1 4] [2 2] [2 4] [3 2] [3 3] [3 4] [1 1]
[1 2] [1 3] [2 1] [2 3] [3 1] [3 2] [3 3])

(for [[loc n] (frequencies (mapcat neighbors cells))
 :when (if (cells loc)

(survive? n)
(birth? n))]

 loc)

Thursday, October 2, 14

27

(defn stepper
 [neighbors birth? survive?]
 (fn [cells]
 (set (for [[loc n] (frequencies (mapcat neighbors cells))
 :when (if (cells loc)

(survive? n)
(birth? n))]

 loc))))

(def conway-stepper (stepper neighbors #{3} #{2 3}))

Selects existing live cell if 2 or 3 neighbors are live

Select dead cell if 3 neighbors are live

Thursday, October 2, 14

Cheap IO

28

(defn create-world
 "Creates rectangular world with the specified width and height.
 Optionally takes coordinates of living cells."
 [w h & living-cells]
 (vec (for [y (range w)]
 (vec (for [x (range h)]
 (if (contains? (first living-cells) [y x]) "X" " "))))))

(create-world 4 4)

[[" " " " " " " "]
[" " " " " " " "]
[" " " " " " " "]
[" " " " " " " "]]

(create-world 4 4 #{[0 0] [1 1] [2 2]})

[["X" " " " " " "]
[" " "X" " " " "]
[" " " " "X" " "]
[" " " " " " " "]]

Thursday, October 2, 14

Running the Game

29

(defn conway
 "Generates world of given size with initial pattern in specified generation"
 [[w h] pattern iterations]
 (->> (iterate conway-stepper pattern)
 (drop iterations)
 first
 (create-world w h)
 (map println)))

Thursday, October 2, 14

Example

30

([]
[X X]
[X X]
[X]
[]
nil nil nil nil nil)

(conway [5 15] glider 1)

([X]
[X]
[X X X]
[]
[]
nil nil nil nil nil)

(conway [5 15] glider 0)

Thursday, October 2, 14

Binary Search Tree

31

10

5

1 8

20

15 30

Data structure books only show keys at each node

But each node has a key and a value

Thursday, October 2, 14

Representing a Tree

32

10

5 20[10 [5 nil nil] [20 nil nil]]

{:key 10, :left {:key 5 }, :right {:key 20}}

[[5 nil nil] 10 [20 nil nil]]

{:key 10 :value foo
:left {:key 5 :value bar}
:right {:key 20 :value foo-bar}}

We will see other ways to represent a tree

Thursday, October 2, 14

Representing Tree

33

10

5

1 8

20

15 30

(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

[key left right]

Thursday, October 2, 14

Hiding the Structure of Node

34

(defn left-child
 [node]
 (node 1))

(defn right-child
 [node]
 (node 2))

(defn value
 [node]
 (node 0))

Thursday, October 2, 14

Navigating the Tree

35

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

10

5

1 8

20

(right-child (left-child large-tree))

(-> large-tree
 left-child
 right-child)

Thursday, October 2, 14

Standard Search

36

(defn find-key
 [tree k]
 (let [left (left-child tree)
 right (right-child tree)
 value (value tree)]
 (cond
 (= k value) k
 (and left (< k value)) (find-key left k)
 (and right (> k value)) (find-key right k)
 :default nil)))

This is where you really want a key & value at each node of the tree

Thursday, October 2, 14

assoc-in

37

Associates a value in a nested structure

(def users [{:name "James" :age 26} {:name "John" :age 43}])

(assoc-in users [1 :age] 44)

[{:name "James", :age 26} {:name "John", :age 44}]

(assoc-in users [1 :password] "nhoJ")

[{:name "James", :age 26} {:password "nhoJ", :name
"John", :age 43}]

Thursday, October 2, 14

38

(defn position-of
 "Return path to k in tree"
 [tree k]
 (let [left (left-child tree)
 right (right-child tree)
 value (value tree)]
 (cond
 (= k value) nil
 (and left (< k value)) (cons 1 (position-of left k))
 (< k value) [1]
 (and right (> k value)) (cons 2 (position-of right k))
 (> k value) [2])))

(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

(position-of tree 5) (1)

(position-of tree 1) (1 1)

(position-of tree 8) (1 2)

(position-of tree 20) (2)

(position-of tree 15) (2 1)

(position-of tree -1) (1 1 1)

(position-of tree 10) nil

Thursday, October 2, 14

Insert

39

(defn bst-insert
 [tree value]
 (assoc-in tree (position-of tree value) [value nil nil]))

(def small-tree [10 nil nil])

(bst-insert small-tree 5) [10 [5 nil nil] nil]

(-> small-tree
 (bst-insert 5)
 (bst-insert 20)
 (bst-insert 1)) [10 [5 [1 nil nil] nil] [20 nil nil]]

Thursday, October 2, 14

Zippers

40

Allow you to navigate & change structures

seq-zip
vector-zip
xml-zip

Keeps track of where you are

Can go
up, down, left, right, next, prev

Thursday, October 2, 14

Zipper Examples

41

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(-> large-tree
 zip/vector-zip
 zip/node) [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/node)

10

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/node)

[5 [1 nil nil] [8 nil nil]]

Thursday, October 2, 14

Zipper Examples

42

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/right
 zip/node)

[20 nil nil]

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/down
 zip/node)

5

Thursday, October 2, 14

Zipper Examples

43

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right)

[[5 [1 nil nil] [8 nil nil]] {:l [10], :pnodes [[10 [5 [1 nil nil]
[8 nil nil]] [20 nil nil]]], :ppath nil, :r ([20 nil nil])}]

Thursday, October 2, 14

Zipper Examples

44

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/right
 (zip/replace [50 nil nil])
 zip/root)

[10 [5 [1 nil nil] [8 nil nil]] [50 nil nil]]

Thursday, October 2, 14

Zipper Examples

45

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 (zip/replace 11)
 zip/root)

[11 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]

Thursday, October 2, 14

46

Manipulating Functions

Thursday, October 2, 14

juxt

47

Combines a set of functions
Returns vector applying each function to input

(def basic-math (juxt + - * /))
(basic-math 2 5)

[7 -3 10 2/5]

(def split-collection (juxt take drop))
(split-collection 4 (range 9)) [(0 1 2 3) (4 5 6 7 8)]

Thursday, October 2, 14

juxt

48

(sort-by (juxt :last :first) [{:last "Adams" :first "Zak"}
 {:last "Zen" :first "Alan"}
 {:last "Smith" :first "Alan"}])

({:last "Adams", :first "Zak"}
 {:last "Smith", :first "Alan"}
 {:last "Zen", :first "Alan"})

(sort-by (juxt :first :last) [{:last "Adams" :first "Zak"}
 {:last "Zen" :first "Alan"}
 {:last "Smith" :first "Alan"}])

({:last "Smith", :first "Alan"}
 {:last "Zen", :first "Alan"}
 {:last "Adams", :first "Zak"})

((juxt :last :first) {:last "Adams" :first "Zak"}) ["Adams" "Zak"]

Thursday, October 2, 14

comp

49

Takes a sequence of functions
Composes the functions

(def fourth (comp first rest rest rest))

(fourth [:a :b :c :d :e]) :d

((comp str +) 8 8 8) "24"

Thursday, October 2, 14

sdsu-nth

50

Given n can we produce

(comp first rest rest rest … rest)

where we have n -1 rest's?

Thursday, October 2, 14

Yes We Can!

51

(defn fnth
 [n]
 (apply comp
 (cons first
 (take (dec n) (repeat rest)))))

((fnth 1) [:a :b :c :d :e])

((fnth 3) [:a :b :c :d :e])

:a

:c

Thursday, October 2, 14

Example from Joy of Clojure, Second Edition

How does this work?

52

(repeat rest) infinite lazy sequence of rest

(take (dec n) (repeat rest)) '(rest rest … rest) ;n-1 rest's

(cons first
 (take (dec n) (repeat rest))) '(first rest rest … rest)

(apply comp
 (cons first
 (take (dec n) (repeat rest))))

(comp first rest rest … rest)

Thursday, October 2, 14

