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Common Operations on Collections

2

Combine elements into one result
sum all elements, 
min

Transform each element
add 10 to each element

Select all elements that meet a condition
all elements greater than 10

Select one elements that meet a condition
First element greater than 10

Group elements by some criteria
group strings by size

Pass each element as argument to function
Print each element to standard out
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Map, Reduce, Filter
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Higher order functions

Very important

Map 
Apply a function to each element of a collection, return resulting collection
Ruby - collect, map
Smalltalk - collect

Filter
Returns elements of collection that make 

Reduce
Applies function
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Reduce
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(reduce + [1 2 3 4]) 10

(reductions + [1 2 3 4]) (1 3 6 10)

(reduce small-add [1 2 3 4 5 6]) 6

(defn small-add
  [subresult x]
  (if (< x 4)
    (+ subresult x)
    (reduced subresult)))
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Map
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Map - the noun

{:a 1 :c 10}

Map - the verb

(map inc [1 2 3])         (2 3 4)
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Map - the Verb
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map    Returns lazy sequence
mapv    Returns vector
pmap    Done in parallel, semi-lazy 
map-indexed f gets index & element

(map f coll)
(map f c1 c2)
(map f c1 c2 c3)
(map f c1 c2 c3 & colls)

(map inc [1 2 3]) (2 3 4)

(map + [1 2 3] [4 5 6]) (5 7 9)

(map + [1 2 3 4 5] [4 5 6]) (5 7 9)

(map inc #{1 2 3}) (2 4 3)

(map + [1 2 3] #{4 5 6}) (5 8 8)
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map-indexed
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(map-indexed vector [:a :b :c]) ([0 :a] [1 :b] [2 :c])
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pmap
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Distributes work among cores, not separate processors/machines

Operation needs to be computationally intense

(time (doall (map inc (range 10000)))) "Elapsed time: 4.73 msecs"

(time (doall (pmap inc (range 10000)))) "Elapsed time: 529.905 msecs"
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Parallel Example
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(defn long-running-job [n]
    (Thread/sleep 3000) ; wait for 3 seconds
    (+ n 10))

(time (doall (map long-running-job (range 4))))

(time (doall (pmap long-running-job (range 4))))

12.005 secs

3.01 secs

(time (doall (map long-running-job (range 8)))) 24.005 secs

(time (doall (pmap long-running-job (range 8)))) 3.01 secs

(time (doall (pmap long-running-job (range 64)))) 6.01 secs
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Since the job is not doing any real work pmap performs very well. It can use multiple threads on one processor and the threads 
can all perform at the same time



Slightly More Realistic Example
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(defn long-running-job 
  [n]
  (reduce + (take 10000000 (iterate #(Math/sin %) n))))

(time (doall (map long-running-job (range N))))
(time (doall (pmap long-running-job (range N))))

N map time secs pmap time secs

2 7.5 4.8

4 15.3 10.1

2.13 GHz Intel Core 2 Duo
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Partition Size
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One can control the size of data send to each thread

partition-all
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filter
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(filter even? [1 2 3 4 5 6 7])

(first (filter even? [1 2 3 4 5 6 7]))

(filter #{3 5 9 12} [1 2 3 4 5 6 7])

(2 4 6)

2

(3 5)
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Specialized filter functions
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(take-while neg? [-2 -1 0 -1 -2 3]) (-2 -1)

(take-while neg? [-2 -1 0 1 2 3]) (-2 -1)

(drop-while neg? [-1 -2 -6 -7 1 2 3 4 -5 -6 0 1]) (1 2 3 4 -5 -6 0 1)

(split-with #(< % 3) [1 2 3 4 5 1]) [(1 2) (3 4 5 1)]

[(take-while pred coll) (drop-while pred coll)](split-with pred coll)
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Sample Problem
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Given a list of numbers
Square each number
Sum all the squares

double[] numbers = read the values
double sum = 0;

for (int k = 0; k < numbers.length; k++) {
double item = numbers[k];
sum =+ item*item

}

(reduce + (map #(%*%) numbers))

(def numbers [1 2 3 4 5])

for (number in numbers)
sum =+ number * number

How What
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Map-Reduce Google
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Inspired by functional programming map & reduce

Distributes data randomly across clusters

Map - filters & sorts

Reduce - summary operation

Google no longer uses Map-Reduce framework

Hadoop - open source implementation 
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Pig-Pen
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Map-Reduce in Clojure

Developed and used at Netflix

Write map-reduce queries as programs

Process massive amounts of data on clusters of machines

http://tinyurl.com/l7l9dgt

Article
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When Processing Collections Consider Using
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map
reduce
filter
for
some
repeatedly
sort-by
keep
take-while
drop-while
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Common Operations on Collections
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Combine elements into one result

Transform each element

Select all elements that meet a condition

Select one elements that meet a condition

Group elements by some criteria

Pass each element as argument to function

reduce

map

for, doseq

filter, take-while, drop-while

(first (filter condition xs))

group-by, partition-by
partition
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Evaluating Lazy Sequences
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(map println [1 2 3]) No output

(dorun (map println [1 2 3])) Output, evaluates one at a time
Returns nil

(doall (map println [1 2 3])) Output, evaluates one at a time
Returns head,
All elements are in memory at once
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Evaluating Lazy Sequences

20

(for [x [1 2 3]]
  (println x))

no output

(doseq [x [1 2 3]]
  (println x))

Output
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Examples
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Conway's Game of Life

Any live cell with fewer than two live neighbours dies, as if caused by under-
population

Any live cell with two or three live neighbours lives on to the next generation

Any live cell with more than three live neighbours dies, as if by overcrowding

Any dead cell with exactly three live neighbours becomes a live cell, as if by 
reproduction
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Representing the Data
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X

Y
(0,0)

Each live cell represented
In Clojure by a vector

[x, y]
[10,2]

[10,2]
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Finding all the neighbors of a point
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(defn neighbors
  "Determines all the neighbors of a given coordinate"
  [[x y]]
  (for [dx [-1 0 1] 
         dy [-1 0 1] 
         :when (not= 0 dx dy)]
    [(+ dx x) (+ dy y)]))

(neighbors [1 1]) ([0 0] [0 1] [0 2] [1 0] [1 2] [2 0] [2 1] [2 2])

([-1 -1] [-1 0] [-1 1] [0 -1] [0 1] [1 -1] [1 0] [1 1])(neighbors [0 0])
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Source http://programmablelife.blogspot.com/2012/08/conways-game-of-life-in-clojure.html



Stepper
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(defn stepper
  [neighbors birth? survive?]
  (fn [cells]
    (set (for [[loc n] (frequencies (mapcat neighbors cells))
               :when (if (cells loc) 

(survive? n) 
(birth? n))]

           loc))))
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How stepper Works
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(mapcat neighbors cells)
[[2 3] [2 2]]

(frequencies (mapcat neighbors cells))

{[2 2] 1, [2 3] 1, [3 3] 2, [1 1] 1, [3 4] 1, [1 4] 1, 
[1 3] 2, [2 4] 1, [3 1] 1, [2 1] 1, [1 2] 2, [3 2] 2}

([1 2] [1 3] [1 4] [2 2] [2 4] [3 2] [3 3] [3 4] [1 1] 
[1 2] [1 3] [2 1] [2 3] [3 1] [3 2] [3 3])

(for [[loc n] (frequencies (mapcat neighbors cells))
               :when (if (cells loc) 

(survive? n) 
(birth? n))]

           loc)
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(defn stepper
  [neighbors birth? survive?]
  (fn [cells]
    (set (for [[loc n] (frequencies (mapcat neighbors cells))
               :when (if (cells loc) 

(survive? n) 
(birth? n))]

           loc))))

(def conway-stepper (stepper neighbors #{3} #{2 3}))

Selects existing live cell if 2 or 3 neighbors are live

Select dead cell if 3 neighbors are live
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Cheap IO
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(defn create-world
  "Creates rectangular world with the specified width and height.
  Optionally takes coordinates of living cells."
  [w h & living-cells]
  (vec (for [y (range w)]
         (vec (for [x (range h)]
                (if (contains? (first living-cells) [y x]) "X" " "))))))

(create-world 4 4)

[[" " " " " " " "] 
[" " " " " " " "] 
[" " " " " " " "] 
[" " " " " " " "]]

(create-world 4 4 #{[0 0] [1 1] [2 2]})

[["X" " " " " " "] 
[" " "X" " " " "] 
[" " " " "X" " "] 
[" " " " " " " "]]
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Running the Game
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(defn conway
  "Generates world of given size with initial pattern in specified generation"
  [[w h] pattern iterations]
   (->> (iterate conway-stepper pattern)
        (drop iterations)
        first
        (create-world w h)
        (map println)))
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Example

30

([                             ]
[X   X                        ]
[  X X                        ]
[  X                          ]
[                             ]
nil nil nil nil nil)

(conway [5 15] glider 1)

([  X                          ]
[    X                        ]
[X X X                        ]
[                             ]
[                             ]
nil nil nil nil nil)

(conway [5 15] glider 0)
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Binary Search Tree
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10

5

1 8

20

15 30

Data structure books only show keys at each node

But each node has a key and a value
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Representing a Tree
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10

5 20[10 [5 nil nil] [20 nil nil]]

{:key 10, :left {:key 5 }, :right {:key 20}}

[[5 nil nil] 10 [20 nil nil]]

{:key 10 :value foo
:left {:key 5  :value bar} 
:right {:key 20 :value foo-bar}}

We will see other ways to represent a tree
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Representing Tree
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10

5

1 8

20

15 30

(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

[key left right]
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Hiding the Structure of Node
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(defn left-child
 [node]
 (node 1))

(defn right-child
 [node]
 (node 2))

(defn value 
 [node]
 (node 0))
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Navigating the Tree
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(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

10

5

1 8

20

(right-child (left-child large-tree))

(-> large-tree
    left-child
    right-child)
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Standard Search
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(defn find-key
 [tree k]
 (let [left (left-child tree)
      right (right-child tree)
      value (value tree)]
  (cond
   (= k value) k
   (and left (< k value))  (find-key left k)
   (and right (> k value)) (find-key right k)
   :default nil)))

This is where you really want a key & value at each node of the tree

Thursday, October 2, 14



assoc-in
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Associates a value in a nested structure

(def users [{:name "James" :age 26}  {:name "John" :age 43}])

(assoc-in users [1 :age] 44)

[{:name "James", :age 26} {:name "John", :age 44}]

(assoc-in users [1 :password] "nhoJ")

[{:name "James", :age 26} {:password "nhoJ", :name 
"John", :age 43}]
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(defn position-of 
   "Return path to k in tree"
 [tree k]
 (let [left (left-child tree)
      right (right-child tree)
      value (value tree)]
  (cond 
   (= k value)                 nil
   (and left (< k value))  (cons 1 (position-of left k))
   (< k value)                  [1]
   (and right (> k value)) (cons 2 (position-of right k))
   (> k value)                   [2])))

(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

(position-of tree 5) (1)

(position-of tree 1) (1 1)

(position-of tree 8) (1 2)

(position-of tree 20) (2)

(position-of tree 15) (2 1)

(position-of tree -1) (1 1 1)

(position-of tree 10) nil
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Insert

39

(defn bst-insert
 [tree value]
 (assoc-in tree (position-of tree value) [value nil nil]))

(def small-tree [10 nil nil])

(bst-insert small-tree 5) [10 [5 nil nil] nil]

(-> small-tree
    (bst-insert 5)
    (bst-insert 20)
    (bst-insert 1)) [10 [5 [1 nil nil] nil] [20 nil nil]]
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Zippers
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Allow you to navigate & change structures

seq-zip
vector-zip
xml-zip

Keeps track of where you are

Can go 
up, down, left, right, next, prev
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Zipper Examples
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10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(-> large-tree
    zip/vector-zip
    zip/node) [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/node)

10

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/node)

[5 [1 nil nil] [8 nil nil]]
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Zipper Examples
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10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/right
    zip/node)

[20 nil nil]

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/down
    zip/node)

5
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Zipper Examples
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10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right)

[[5 [1 nil nil] [8 nil nil]] {:l [10], :pnodes [[10 [5 [1 nil nil] 
[8 nil nil]] [20 nil nil]]], :ppath nil, :r ([20 nil nil])}]
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Zipper Examples
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10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/right
    (zip/replace [50 nil nil])
    zip/root)

[10 [5 [1 nil nil] [8 nil nil]] [50 nil nil]]
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Zipper Examples
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10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    (zip/replace 11)
    zip/root)

[11 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]
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Manipulating Functions
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juxt
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Combines a set of functions
Returns vector applying each function to input

(def basic-math (juxt + - * /))
(basic-math 2 5)

[7 -3 10 2/5]

(def split-collection (juxt take drop))
(split-collection 4 (range 9)) [(0 1 2 3) (4 5 6 7 8)]
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juxt
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(sort-by (juxt :last :first) [{:last "Adams" :first "Zak"} 
                                      {:last "Zen" :first "Alan"}
                                      {:last "Smith" :first "Alan"}])

({:last "Adams", :first "Zak"} 
 {:last "Smith", :first "Alan"} 
 {:last "Zen", :first "Alan"})

(sort-by (juxt :first :last) [{:last "Adams" :first "Zak"} 
                              {:last "Zen" :first "Alan"}
                              {:last "Smith" :first "Alan"}])

({:last "Smith", :first "Alan"}  
 {:last "Zen", :first "Alan"} 
 {:last "Adams", :first "Zak"})

((juxt :last :first) {:last "Adams" :first "Zak"} ) ["Adams" "Zak"]
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comp
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Takes a sequence of functions
Composes the functions

(def fourth (comp first rest rest rest))

(fourth [:a :b :c :d :e]) :d

((comp str +) 8 8 8) "24"
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sdsu-nth
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Given n can we produce

(comp first rest rest rest … rest)

where we have n -1 rest's?
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Yes We Can!
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(defn fnth 
  [n]
  (apply comp
         (cons first
               (take (dec n) (repeat rest)))))

((fnth 1) [:a :b :c :d :e])

((fnth 3) [:a :b :c :d :e])

:a

:c
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Example from Joy of Clojure, Second Edition



How does this work?
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(repeat rest) infinite lazy sequence of rest

(take (dec n) (repeat rest)) '(rest rest … rest) ;n-1 rest's 

(cons first
         (take (dec n) (repeat rest))) '(first rest rest … rest)

(apply comp
         (cons first
               (take (dec n) (repeat rest))))

(comp first rest rest … rest)
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