
CS 596 Functional Programming and Design
Fall Semester, 2014

Doc 10 BST, Manipulating Functions
Oct 7, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, October 7, 14

Binary Search Tree

2

10

5

1 8

20

15 30

Data structure books only show keys at each node

But each node has a key and a value

Tuesday, October 7, 14

Representing a Tree

3

10

5 20[10 [5 nil nil] [20 nil nil]]

{:key 10, :left {:key 5 }, :right {:key 20}}

[[5 nil nil] 10 [20 nil nil]]

{:key 10 :value foo
:left {:key 5 :value bar}
:right {:key 20 :value foo-bar}}

We will see other ways to represent a tree

Tuesday, October 7, 14

Representing Tree

4

10

5

1 8

20

15 30

(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

[key left right]

Tuesday, October 7, 14

Hiding the Structure of Node

5

(defn left-child
 [node]
 (node 1))

(defn right-child
 [node]
 (node 2))

(defn value
 [node]
 (node 0))

Tuesday, October 7, 14

Navigating the Tree

6

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

10

5

1 8

20

(right-child (left-child large-tree))

(-> large-tree
 left-child
 right-child)

Tuesday, October 7, 14

Standard Search

7

(defn find-key
 [tree k]
 (let [left (left-child tree)
 right (right-child tree)
 value (value tree)]
 (cond
 (= k value) k
 (and left (< k value)) (find-key left k)
 (and right (> k value)) (find-key right k)
 :default nil)))

This is where you really want a key & value at each node of the tree

Tuesday, October 7, 14

Inserting

8

10

5

1 8

20

10

5

1 8

20

15

Add 15

But we have persistence & immutability

Tuesday, October 7, 14

Inserting

9

10

5

1 8

20

10

5

1 8

20

Add 15

10

20

15

Tuesday, October 7, 14

Inserting - Three Ways

10

Build the tree as you traverse the tree

Find path to node and use assoc-in

Use a zipper

Tuesday, October 7, 14

Build Tree as Traverse

11

Tree node {:left left-child :value value :right right-child}

(defn make-tree
 [lelft value right]
 {:left left :val value :right right})

(defn insert [tree value]
 (if-let [member (:value tree)]
 (cond
 (< value member) (make-tree (insert (:left tree) value) member (:right tree))
 (> value member) (make-tree (:left tree) member (insert (:right tree) value))
 :else tree)
 (make-tree nil value nil)))

Tuesday, October 7, 14

From https://github.com/leonardoborges/purely-functional-data-structures/blob/master/src/
purely_functional_data_structures/ch2.clj

assoc-in

12

Associates a value in a nested structure

(def users [{:name "James" :age 26} {:name "John" :age 43}])

(assoc-in users [1 :age] 44)

[{:name "James", :age 26} {:name "John", :age 44}]

(assoc-in users [1 :password] "nhoJ")

[{:name "James", :age 26} {:password "nhoJ", :name
"John", :age 43}]

Tuesday, October 7, 14

13

(defn position-of
 "Return path to k in tree"
 [tree k]
 (let [left (left-child tree)
 right (right-child tree)
 value (value tree)]
 (cond
 (= k value) nil
 (and left (< k value)) (cons 1 (position-of left k))
 (< k value) [1]
 (and right (> k value)) (cons 2 (position-of right k))
 (> k value) [2])))

(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

(position-of tree 5) (1)

(position-of tree 1) (1 1)

(position-of tree 8) (1 2)

(position-of tree 20) (2)

(position-of tree 15) (2 1)

(position-of tree -1) (1 1 1)

(position-of tree 10) nil

Tuesday, October 7, 14

Insert

14

(defn bst-insert
 [tree value]
 (assoc-in tree (position-of tree value) [value nil nil]))

(def small-tree [10 nil nil])

(bst-insert small-tree 5) [10 [5 nil nil] nil]

(-> small-tree
 (bst-insert 5)
 (bst-insert 20)
 (bst-insert 1)) [10 [5 [1 nil nil] nil] [20 nil nil]]

Tuesday, October 7, 14

Zippers

15

Allow you to navigate & change structures

seq-zip
vector-zip
xml-zip

Keeps pointer to current location in structure

Moving
up, down, left, right, next, prev, leftmost, rightmost

Accessing structure
node, root

Editing
remove, replace, edit, insert-child

Tuesday, October 7, 14

Zipper Examples

16

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(-> large-tree
 zip/vector-zip
 zip/node) [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/node)

10

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/node)

[5 [1 nil nil] [8 nil nil]]

Tuesday, October 7, 14

Zipper Examples

17

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/right
 zip/node)

[20 nil nil]

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/down
 zip/node)

5

Tuesday, October 7, 14

Zipper Examples

18

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right)

[[5 [1 nil nil] [8 nil nil]] {:l [10], :pnodes [[10 [5 [1 nil nil]
[8 nil nil]] [20 nil nil]]], :ppath nil, :r ([20 nil nil])}]

Tuesday, October 7, 14

Zipper Examples

19

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/right
 (zip/replace [50 nil nil])
 zip/root)

[10 [5 [1 nil nil] [8 nil nil]] [50 nil nil]]

Tuesday, October 7, 14

Zipper Examples

20

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 (zip/replace 11)
 zip/root)

[11 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]

Tuesday, October 7, 14

BST Insert with Zipper

21

[key left right] Tree representation

(defn zipper->left-child
 [zipper]
 (-> zipper zip/down zip/right))

(defn zipper->right-child
 [zipper]
 (-> zipper zip/down zip/rightmost))

(defn zipper->value
 [zipper]
 (if (zip/node zipper)
 (-> zipper zip/down zip/node)
 nil))

Accessing

Tuesday, October 7, 14

Replacing/Testing

22

(defn replace-node
 [zipper replacement]
 (let [location (zip/node zipper)
 node (zip/make-node zipper location [replacement nil nil])]
 (-> zipper (zip/replace node) zip/root)))

(defn tree-empty?
 [zipper]
 (not (zip/node zipper)))

Tuesday, October 7, 14

The Insert

23

(defn bst-zipper-insert
 [zipper x]
 (let [value (zipper->value zipper)]
 (cond
 (tree-empty? zipper) (replace-node zipper x)
 (= x value) (zip/root zipper)
 (< x value) (recur (zipper->left-child zipper) x)
 (> x value) (recur (zipper->right-child zipper) x))))

(defn bst-insert
 [tree x]
 (bst-zipper-insert (zip/vector-zip tree) x))

Tuesday, October 7, 14

BST as Maps & Zippers

24

Zippers are defined for
XML
vectors
seq

What about other structures?

{:left {:value 5 :left nil :right nil} :value 10 :right {:value 15 :left nil :right nil}}

Can define zippers on other types

Tuesday, October 7, 14

Making New Zippers

25

(zipper branch? children make-node root)

branch?
One argument - node
Returns true if node can have children

children
One argument - node
Returns sequence of the node's children

make-node
Two arguments - Existing node, seq of children
Returns new node from the children

Root
Root of the structure

Tuesday, October 7, 14

Zipper for BST as a map

26

{:left {:value 5 :left nil :right nil} :value 10 :right nil}

branch?
map?

children
(defn tree->children
 [map]
 [(:value map) (:left map) (:right map)])

make-node
(defn children->tree
 [_ sequence]
 {:value (first sequence)
 :left (second sequence)
 :right (last sequence)})

Order has to match that in
tree->children

Tuesday, October 7, 14

Using the Zipper

27

(def map-tree {:left {:value 5 :left nil :right nil} :value 10 :right {:value 15 :left nil :right nil}})

10

5 15

(def map-zipper (zip/zipper map? tree->children children->tree map-tree))

(-> map-zipper
 zip/down
 zip/right
 zip/node) {:value 5, :left nil, :right nil}

Tuesday, October 7, 14

Doing insert in BST as map

28

(defn bst-map-insert
 [tree x]
 (bst-zipper-insert
 (zip/zipper map? tree->children children->tree tree)
 x))

Tuesday, October 7, 14

Notice the repeat

29

(zip/zipper map? tree->children children->tree tree)

Once we figure out the needed functions would like to forget about it

(defn bst-map-zipper
 [tree-map]

(zip/zipper map? tree->children children->tree tree-map)

Tuesday, October 7, 14

Shorter Way - partial

30

(defn bst-map-zipper (partial zip/zipper map? tree->children children->tree)

(partial f arg1 arg2 … argk)

f - function with n > k arguments
arg1 arg2 … argk - first k arguments of f
Return function that needs n - k arguments

Tuesday, October 7, 14

Examples

31

(reduce + (take-while (partial > 1000) (iterate inc 0)))

(def hundred-times (partial * 100))
(hundred-times 5)

(hundred-times 5 4)

500

2000

499500

(def to-english (partial clojure.pprint/cl-format nil "~@(~@[~R~]~^ ~A.~)"))

(to-english 123456)

"One hundred twenty-three thousand, four hundred fifty-six"

Tuesday, October 7, 14

Currying

32

Currying
Multi-argument function -> chain of single-argument functions

adder(a, b c) {a + b + c;}

addA = adder.curry();
addB = addA(2);
addC = addB(3);
answer = addC(4);

Tuesday, October 7, 14

33

Manipulating Functions

Tuesday, October 7, 14

juxt

34

Combines a set of functions
Returns vector applying each function to input

(def basic-math (juxt + - * /))
(basic-math 2 5)

[7 -3 10 2/5]

(def split-collection (juxt take drop))
(split-collection 4 (range 9)) [(0 1 2 3) (4 5 6 7 8)]

Tuesday, October 7, 14

juxt

35

(sort-by (juxt :last :first) [{:last "Adams" :first "Zak"}
 {:last "Zen" :first "Alan"}
 {:last "Smith" :first "Alan"}])

({:last "Adams", :first "Zak"}
 {:last "Smith", :first "Alan"}
 {:last "Zen", :first "Alan"})

(sort-by (juxt :first :last) [{:last "Adams" :first "Zak"}
 {:last "Zen" :first "Alan"}
 {:last "Smith" :first "Alan"}])

({:last "Smith", :first "Alan"}
 {:last "Zen", :first "Alan"}
 {:last "Adams", :first "Zak"})

((juxt :last :first) {:last "Adams" :first "Zak"}) ["Adams" "Zak"]

Tuesday, October 7, 14

comp

36

Takes a sequence of functions
Composes the functions

(def fourth (comp first rest rest rest))

(fourth [:a :b :c :d :e]) :d

((comp str +) 8 8 8) "24"

Tuesday, October 7, 14

sdsu-nth

37

Given n can we produce

(comp first rest rest rest … rest)

where we have n -1 rest's?

Tuesday, October 7, 14

Yes We Can!

38

(defn fnth
 [n]
 (apply comp
 (cons first
 (take (dec n) (repeat rest)))))

((fnth 1) [:a :b :c :d :e])

((fnth 3) [:a :b :c :d :e])

:a

:c

Tuesday, October 7, 14

Example from Joy of Clojure, Second Edition

How does this work?

39

(repeat rest) infinite lazy sequence of rest

(take (dec n) (repeat rest)) '(rest rest … rest) ;n-1 rest's

(cons first
 (take (dec n) (repeat rest))) '(first rest rest … rest)

(apply comp
 (cons first
 (take (dec n) (repeat rest))))

(comp first rest rest … rest)

Tuesday, October 7, 14

memoize

40

(memoize f)

Caches results of function f
Uses cached value next time f is called with same arguments

(defn adder
 [x]
 (println "adder" x)
 (inc x))

(def adder-memoized (memoize adder))

(adder-memoized 1) prints 1, returns 2
(adder-memoized 1) returns 2
(adder-memoized 2) prints 2, returns 3
(adder-memoized 1) returns 2

Tuesday, October 7, 14

memoize - Cache Size

41

Cache is a map

Contains return values for each different set of input arguments

Tuesday, October 7, 14

Delay

42

Suspends execution of code until delay is dereferenced

Caches result

Second time dereferenced returns cached result

Thread safe

(def wait (delay (println "do it now") (+ 1 2)))

@wait prints "do it now", returns 3
@wait returns 3

Tuesday, October 7, 14

realized?

43

(def wait (delay (println "do it now") (+ 1 2)))

(realized? wait) false
@wait prints "do it now", returns 3
(realized? wait) true
@wait returns 3

Returns true if a value has been produced for a promise, delay, future or lazy
sequence.

Tuesday, October 7, 14

Example - Proxy for Expensive Operation

44

(defn fetch-page
 [url]
 {:url url
 :contents (delay (slurp url))})

(def result (fetch-page "http://www.eli.sdsu.edu/index.html"))

(:contents result) #<Delay@2fcc470c: :pending>

(realized? (:contents result)) false

@(:contents result) "<!DOCTYPE html>\n<html lang=\"en\">\n …"

Tuesday, October 7, 14

@ and deref

45

@(:contents result)

(deref (:contents result))

Tuesday, October 7, 14

Future

46

(def long-calculation (future (apply + (range 1e8))))
@long-calculation

Computes body on another thread

Use @ or deref to get answer

@, deref blocks until computation is done

Tuesday, October 7, 14

Future & Delay in ending program

47

(def long-calculation (future (apply + (range 1e8))))

@long-calculation

(shutdown-agents)

When you end your program there will be a 1 minute delay if you used future

End your program with (shutdown-agents)

Tuesday, October 7, 14

(shutdown-agents) & REPL

48

(shutdown-agents) shuts down your REPL

Tuesday, October 7, 14

deref with Timeout

49

(deref (future (Thread/sleep 5000) :done!)
 1000
 :impatient!)
 ;= :impatient!

Tuesday, October 7, 14

Future

50

(println "[Main] Start")

(def what-is-the-answer-to-life (future
 (println "[Future] started computation")
 (Thread/sleep 3000) ;;
 (println "[Future] completed computation")
 42))

(println "[Main] created future")

(Thread/sleep 1000)
(println "[Main] do other things")
(println "[Main] the result" @what-is-the-answer-to-life)

Tuesday, October 7, 14

