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Binary Search Tree
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Data structure books only show keys at each node

But each node has a key and a value
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Representing a Tree
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10

5 20[10 [5 nil nil] [20 nil nil]]

{:key 10, :left {:key 5 }, :right {:key 20}}

[[5 nil nil] 10 [20 nil nil]]

{:key 10 :value foo
:left {:key 5  :value bar} 
:right {:key 20 :value foo-bar}}

We will see other ways to represent a tree
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Representing Tree
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(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

[key left right]
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Hiding the Structure of Node
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(defn left-child
 [node]
 (node 1))

(defn right-child
 [node]
 (node 2))

(defn value 
 [node]
 (node 0))
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Navigating the Tree
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(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

10

5

1 8

20

(right-child (left-child large-tree))

(-> large-tree
    left-child
    right-child)
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Standard Search
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(defn find-key
 [tree k]
 (let [left (left-child tree)
      right (right-child tree)
      value (value tree)]
  (cond
   (= k value) k
   (and left (< k value))  (find-key left k)
   (and right (> k value)) (find-key right k)
   :default nil)))

This is where you really want a key & value at each node of the tree
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Inserting
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Add 15

But we have persistence & immutability
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Inserting
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Inserting - Three Ways
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Build the tree as you traverse the tree

Find path to node and use assoc-in

Use a zipper
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Build Tree as Traverse
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Tree node {:left left-child :value value :right right-child}

(defn make-tree 
  [lelft value right]
  {:left left :val value :right right})

(defn insert [tree value]
  (if-let [member (:value tree)]
    (cond
       (< value member) (make-tree (insert (:left tree) value) member (:right tree))
       (> value member) (make-tree (:left tree) member (insert (:right tree) value))
       :else tree)
    (make-tree nil value nil)))
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From https://github.com/leonardoborges/purely-functional-data-structures/blob/master/src/
purely_functional_data_structures/ch2.clj



assoc-in
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Associates a value in a nested structure

(def users [{:name "James" :age 26}  {:name "John" :age 43}])

(assoc-in users [1 :age] 44)

[{:name "James", :age 26} {:name "John", :age 44}]

(assoc-in users [1 :password] "nhoJ")

[{:name "James", :age 26} {:password "nhoJ", :name 
"John", :age 43}]
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(defn position-of 
   "Return path to k in tree"
 [tree k]
 (let [left (left-child tree)
      right (right-child tree)
      value (value tree)]
  (cond 
   (= k value)                 nil
   (and left (< k value))  (cons 1 (position-of left k))
   (< k value)                  [1]
   (and right (> k value)) (cons 2 (position-of right k))
   (> k value)                   [2])))

(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

(position-of tree 5) (1)

(position-of tree 1) (1 1)

(position-of tree 8) (1 2)

(position-of tree 20) (2)

(position-of tree 15) (2 1)

(position-of tree -1) (1 1 1)

(position-of tree 10) nil
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Insert
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(defn bst-insert
 [tree value]
 (assoc-in tree (position-of tree value) [value nil nil]))

(def small-tree [10 nil nil])

(bst-insert small-tree 5) [10 [5 nil nil] nil]

(-> small-tree
    (bst-insert 5)
    (bst-insert 20)
    (bst-insert 1)) [10 [5 [1 nil nil] nil] [20 nil nil]]
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Zippers
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Allow you to navigate & change structures

seq-zip
vector-zip
xml-zip

Keeps pointer to current location in structure

Moving
up, down, left, right, next, prev, leftmost, rightmost

Accessing structure
node, root

Editing
remove, replace, edit, insert-child
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Zipper Examples
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(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(-> large-tree
    zip/vector-zip
    zip/node) [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/node)

10

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/node)

[5 [1 nil nil] [8 nil nil]]
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Zipper Examples
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(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/right
    zip/node)

[20 nil nil]

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/down
    zip/node)

5
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Zipper Examples
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(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right)

[[5 [1 nil nil] [8 nil nil]] {:l [10], :pnodes [[10 [5 [1 nil nil] 
[8 nil nil]] [20 nil nil]]], :ppath nil, :r ([20 nil nil])}]
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Zipper Examples
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(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/right
    (zip/replace [50 nil nil])
    zip/root)

[10 [5 [1 nil nil] [8 nil nil]] [50 nil nil]]
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Zipper Examples
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(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    (zip/replace 11)
    zip/root)

[11 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]
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BST Insert with Zipper
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[key left right] Tree representation

(defn zipper->left-child
  [zipper]
  (-> zipper zip/down zip/right))

(defn zipper->right-child
  [zipper]
  (-> zipper zip/down zip/rightmost))

(defn zipper->value
  [zipper]
  (if (zip/node zipper)
    (-> zipper zip/down zip/node)
    nil))

Accessing 
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Replacing/Testing
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(defn replace-node
  [zipper replacement]
  (let [location (zip/node zipper)
        node (zip/make-node zipper location [replacement nil nil])]
    (-> zipper (zip/replace node) zip/root)))

(defn tree-empty?
  [zipper]
  (not (zip/node zipper)))
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The Insert
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(defn bst-zipper-insert
  [zipper x]
  (let [value (zipper->value zipper)]
    (cond
      (tree-empty? zipper) (replace-node zipper x)
      (= x value) (zip/root zipper)
      (< x value) (recur (zipper->left-child zipper) x)
      (> x value) (recur (zipper->right-child zipper) x))))

(defn bst-insert
  [tree x]
  (bst-zipper-insert (zip/vector-zip tree) x))

Tuesday, October 7, 14



BST as Maps & Zippers
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Zippers are defined for 
XML
vectors
seq

What about other structures?

{:left {:value 5 :left nil :right nil} :value 10 :right {:value 15 :left nil :right nil}}

Can define zippers on other types
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Making New Zippers
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(zipper branch? children make-node root)

branch?
One argument - node
Returns true if node can have children

children
One argument - node
Returns sequence of the node's children

make-node
Two arguments - Existing node, seq of children
Returns new node from the children

Root
Root of the structure
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Zipper for BST as a map
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{:left {:value 5 :left nil :right nil} :value 10 :right nil}

branch?
map?

children
(defn tree->children
  [map]
  [(:value map) (:left map) (:right map)])

make-node
(defn children->tree
  [_ sequence]
  {:value (first sequence)
   :left (second sequence)
   :right (last sequence)})

Order has to match that in
tree->children
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Using the Zipper
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(def map-tree {:left {:value 5 :left nil :right nil} :value 10 :right {:value 15 :left nil :right nil}})

10

5 15

(def map-zipper (zip/zipper map? tree->children children->tree map-tree))

(-> map-zipper
    zip/down
    zip/right
    zip/node) {:value 5, :left nil, :right nil}
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Doing insert in BST as map
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(defn bst-map-insert
  [tree x]
  (bst-zipper-insert 
     (zip/zipper map? tree->children children->tree tree)
     x))
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Notice the repeat
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(zip/zipper map? tree->children children->tree tree)

Once we figure out the needed functions would like to forget about it

(defn bst-map-zipper
    [tree-map]

(zip/zipper map? tree->children children->tree tree-map) 
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Shorter Way - partial
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(defn bst-map-zipper  (partial zip/zipper map? tree->children children->tree) 

(partial f arg1 arg2 … argk)

f - function with n > k arguments
arg1 arg2 … argk - first k arguments of f
Return function that needs n - k arguments
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Examples
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(reduce + (take-while (partial > 1000) (iterate inc 0)))

(def hundred-times (partial * 100))
(hundred-times 5)

(hundred-times 5 4)

500

2000

499500

(def to-english (partial clojure.pprint/cl-format nil "~@(~@[~R~]~^ ~A.~)"))

(to-english 123456)

"One hundred twenty-three thousand, four hundred fifty-six"
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Currying
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Currying
Multi-argument function -> chain of single-argument functions

adder(a, b c) {a + b + c;}

addA = adder.curry();
addB = addA(2);
addC = addB(3);
answer = addC(4);
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Manipulating Functions
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juxt
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Combines a set of functions
Returns vector applying each function to input

(def basic-math (juxt + - * /))
(basic-math 2 5)

[7 -3 10 2/5]

(def split-collection (juxt take drop))
(split-collection 4 (range 9)) [(0 1 2 3) (4 5 6 7 8)]
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juxt
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(sort-by (juxt :last :first) [{:last "Adams" :first "Zak"} 
                                      {:last "Zen" :first "Alan"}
                                      {:last "Smith" :first "Alan"}])

({:last "Adams", :first "Zak"} 
 {:last "Smith", :first "Alan"} 
 {:last "Zen", :first "Alan"})

(sort-by (juxt :first :last) [{:last "Adams" :first "Zak"} 
                              {:last "Zen" :first "Alan"}
                              {:last "Smith" :first "Alan"}])

({:last "Smith", :first "Alan"}  
 {:last "Zen", :first "Alan"} 
 {:last "Adams", :first "Zak"})

((juxt :last :first) {:last "Adams" :first "Zak"} ) ["Adams" "Zak"]
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comp
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Takes a sequence of functions
Composes the functions

(def fourth (comp first rest rest rest))

(fourth [:a :b :c :d :e]) :d

((comp str +) 8 8 8) "24"
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sdsu-nth
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Given n can we produce

(comp first rest rest rest … rest)

where we have n -1 rest's?
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Yes We Can!
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(defn fnth 
  [n]
  (apply comp
         (cons first
               (take (dec n) (repeat rest)))))

((fnth 1) [:a :b :c :d :e])

((fnth 3) [:a :b :c :d :e])

:a

:c
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How does this work?
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(repeat rest) infinite lazy sequence of rest

(take (dec n) (repeat rest)) '(rest rest … rest) ;n-1 rest's 

(cons first
         (take (dec n) (repeat rest))) '(first rest rest … rest)

(apply comp
         (cons first
               (take (dec n) (repeat rest))))

(comp first rest rest … rest)
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memoize
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(memoize f)

Caches results of function f
Uses cached value next time f is called with same arguments

(defn adder
  [x]
  (println "adder" x)
  (inc x))

(def adder-memoized (memoize adder))

(adder-memoized 1)   prints 1, returns 2
(adder-memoized 1)   returns 2
(adder-memoized 2)   prints 2, returns 3
(adder-memoized 1)   returns 2
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memoize - Cache Size
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Cache is a map

Contains return values for each different set of input arguments
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Delay
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Suspends execution of code until delay is dereferenced

Caches result

Second time dereferenced returns cached result

Thread safe

(def wait (delay (println "do it now") (+ 1 2)))

@wait   prints "do it now", returns 3
@wait   returns 3
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realized?
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(def wait (delay (println "do it now") (+ 1 2)))

(realized? wait) false
@wait    prints "do it now", returns 3
(realized? wait) true
@wait    returns 3

Returns true if a value has been produced for a promise, delay, future or lazy 
sequence.
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Example - Proxy for Expensive Operation
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(defn fetch-page
  [url]
  {:url url
   :contents (delay (slurp url))})

(def result (fetch-page "http://www.eli.sdsu.edu/index.html"))

(:contents result)      #<Delay@2fcc470c: :pending>

(realized? (:contents result))   false

@(:contents result)     "<!DOCTYPE html>\n<html lang=\"en\">\n …"
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@ and deref
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@(:contents result)

(deref (:contents result))
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Future
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(def long-calculation (future (apply + (range 1e8))))
@long-calculation

Computes body on another thread

Use @ or deref to get answer

@, deref blocks until computation is done
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Future & Delay in ending program
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(def long-calculation (future (apply + (range 1e8))))

@long-calculation

(shutdown-agents)

When you end your program there will be a 1 minute delay if you used future

End your program with (shutdown-agents)
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(shutdown-agents) & REPL
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(shutdown-agents) shuts down your REPL
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deref with Timeout
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(deref (future (Thread/sleep 5000) :done!)
          1000
          :impatient!)
   ;= :impatient!
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Future
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(println "[Main] Start")

(def what-is-the-answer-to-life (future 
        (println "[Future] started computation")
        (Thread/sleep 3000) ;;
        (println "[Future] completed computation")
        42))
        
(println "[Main] created future")

(Thread/sleep 1000)
(println "[Main] do other things")
(println "[Main] the result" @what-is-the-answer-to-life)
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