
CS 596 Functional Programming and Design
Fall Semester, 2014

Doc 12 Example, Assignment 3
Oct 14, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, October 14, 14

2

Battleship Example

Tuesday, October 14, 14

The Problem

3

Context - Writing a battleship game

Need a function that determines
Is an enemy ship within range of our ships weapon
But weapon has a blast area so cannot use weapon if

Enemy ship is to close to us or other friendly ships

Tuesday, October 14, 14

First Pass

4

range

)LJXUH ���� 7KH SRLQWV LQ UDQJH RI D VKLS ORFDWHG DW WKH RULJLQ

Assume we are at origin
Given a point & range
Is point within range

Point - [x y]

(defn in-range-1
 [position range]
 (let [pos-x (first position)
 pos-y (last position)
 target-distance (Math/sqrt (+ (* pos-x pos-x) (* pos-y pos-y)))]
 (< target-distance range)))

(in-range-1 [1 1] 1)

(in-range-1 [1 1] 2)

false

true

Tuesday, October 14, 14

Second Pass

5

Let our position be any location

(defn in-range-2
 [position own-position range]
 (let [pos-x (first position)
 pos-y (last position)
 own-x (first own-position)
 own-y (last own-position)
 dx (- pos-x own-x)
 dy (- pos-y own-y)
 target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
 (< target-distance range)))

This is a Java program
using Clojure syntax

Tuesday, October 14, 14

Second Pass - a

6

Using destructuring

(defn in-range-2a
 [[pos-x pos-y] [own-pos-x own-pos-y] range]
 (let [dx (- own-pos-x pos-x)
 dy (- own-pos-y pos-y)
 target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
 (< target-distance range)))

What do we gain? lose?

Tuesday, October 14, 14

Second Pass - b

7

With map

(defn in-range-2b
 [position own-position range]
 (let [[dx dy] (map - position own-position)
 target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
 (< target-distance range)))

What do we gain? lose?

Tuesday, October 14, 14

Second Pass - c

8

(defn in-range-2c
 [position own-position range]
 (let [delta (map - position own-position)
 target-distance (Math/sqrt (reduce + (map * delta delta)))]
 (< target-distance range)))

Using map & reduce

What do we gain? lose?

Tuesday, October 14, 14

Third Pass

9

minD

range

Friendly

)LJXUH ���� $YRLGLQJ HQJDJLQJ HQHPLHV WRR FORVH WR WKH VKLS

(defn in-range-3
 [safe-distance range own-position position friend-position]
 (let [delta (map - position own-position)
 target-distance (Math/sqrt (reduce + (map * delta delta)))
 friend-delta (map - position friend-position)
 target->friend (Math/sqrt (reduce + (map * friend-delta friend-delta)))]
 (and
 (< safe-distance target->friend)
 (< safe-distance target-distance range))))

Tuesday, October 14, 14

Third Pass

10

minD

range

Friendly

)LJXUH ���� $YRLGLQJ HQJDJLQJ HQHPLHV WRR FORVH WR WKH VKLS

(defn distance-between
 [a b]
 (let [delta (map - a b)]
 (Math/sqrt (reduce + (map * delta delta)))))

(defn in-range-3a
 [safe-distance range self target friend]
 (and
 (< safe-distance (distance-between friend target))
 (< safe-distance (distance-between self target) range)))

(def in-torpedo-range (partial in-range-3a 1.5 20))
(def in-cannon-range (partial in-range-3a 3 500))

Tuesday, October 14, 14

What is the Abstraction?

11

What are we doing?

Dealing with circles shapes

Union
Intersection
Complement

Is a point in a shape

Tuesday, October 14, 14

circle - returns a function

12

(defn circle
 ([radius]
 (circle [0 0] radius))
 ([center radius]
 (fn
 [point]
 (<= (distance-between center point) radius))))

(def small-circle (circle 1))

(small-circle [0.5 0]) true
(small-circle [1 2]) false

Tuesday, October 14, 14

outside

13

(defn outside
 [shape]
 (complement shape))

(def small-circle (circle 1))

((outside small-circle) [0.5 0]) false
((outside small-circle) [1 2]) true

Tuesday, October 14, 14

union

14

(defn union
 ([shape]
 shape)

 ([shape-a shape-b]
 (fn [point]
 (or (shape-a point) (shape-b point))))

 ([shape-a shape-b & shapes]
 (fn [point]
 (let [all-shapes (conj shapes shape-a shape-b)]
 (reduce #(or %1 (%2 point)) false all-shapes)))))

Tuesday, October 14, 14

Higher Level in range

15

(defn in-range-4
 [safe-distance range self target friend]
 (let [self-safe-zone (outside (circle self safe-distance))
 friend-safe-zone (outside (circle friend safe-distance))
 weapon-area (circle self range)
 target-zone (intersection weapon-area friend-safe-zone self-safe-zone)]
 (target-zone target)))

Tuesday, October 14, 14

16

Assignment 3

Tuesday, October 14, 14

17

(def sdsu-roman-numeral
 (partial clojure.pprint/cl-format nil "~@R"))

Tuesday, October 14, 14

18

(defn sdsu-rotate [n lst]
 (if (neg? n)
 (sdsu-rotate-helper (* n -1) (reverse lst) true)
 (sdsu-rotate-helper n lst false)))

(defn sdsu-rotate-helper [n lst rev]
 (if (list? lst)
 (sdsu-rotate-helper n (vec lst) rev)
 (if (zero? n)
 (if rev
 (vec (reverse lst))
 lst)
 (sdsu-rotate-helper (dec n) (conj (subvec lst 1) (first lst)) rev))))

Tuesday, October 14, 14

19

(require '[clojure.set :refer [union]])

(defn sdsu-sum [num01 num02 maxMultiple]
 (reduce + (union (set (multiplesOfXUnderMax num01 maxMultiple))
 (set (multiplesOfXUnderMax num02 maxMultiple)))))

(defn multiples [resultMultiples n currMultiple maxMultiple]
 (let [currResult (* n currMultiple)]
 (if (or (>= currResult maxMultiple) (< currResult 0) (>= currMultiple maxMultiple))
 resultMultiples
 (multiples (cons currResult resultMultiples) n (inc currMultiple) maxMultiple))))

(defn multiplesOfXUnderMax [x maxMultiple]
 (if (or (< x 0) (< maxMultiple x))
 (list 0)
 (multiples (list x) x x maxMultiple)))

Tuesday, October 14, 14

20

(defn find-hundreds-place [number]
 (cond
 (= (first number) \1) "C"
 (= (first number) \2) "CC"
 (= (first number) \3) "CCC"
 (= (first number) \4) "CD"
 (= (first number) \5) "D"
 (= (first number) \6) "DC"
 (= (first number) \7) "DCC"
 (= (first number) \8) "DCCC"
 (= (first number) \9) "CM"))

(defn find-hundreds-place [number]
 (condp = (first number)
 \1 "C"
 \2 "CC"
 \3 "CCC"
 \4 "CD"
 \5 "D"
 \6 "DC"
 \7 "DCC"
 \8 "DCCC"
 \9 "CM"))

Tuesday, October 14, 14

21

(def replace-chars

 {\A :A, \B :B, \C :C, \D :D, \E :E, \F :F, \G :G, \H :H \I :I, \J :J, \K :K,, \L :L, \M :M,
 \N :N, \O :O, \P :P, \Q :Q, \R :R, \S :S, \T :T, \U :U, \V :V, \W :W, \X :X, \Y :Y, \Z :Z,
 \! :!, \@ :@, \# :#, \$:$, \% :%, \^ :^, \& :&, * :*, \- :-, _ :_, \+ :+, \= :=, \. :.,
 \< :<, \> :>, \? :?, \\ :\, \" :", \' :',\/ :/, \` :`, \~ :~,
 }

)

(defn sdsu-dna-count [dna]

(let [str-dna (replace replace-chars dna)]
 (frequencies str-dna))

)

Tuesday, October 14, 14

22

(defn sdsu-palindrome
 "Higher order function calling palindrome function by passing palindrome-value into it."
 [value]
 (cond
 (> value 1)
 (last (sort (filter (complement nil?)
 (into [] (palindrome value)))))

 :else "Please enter number greater than 1"))

Tuesday, October 14, 14

23

Some Solutions

Tuesday, October 14, 14

rotate

24

(defn sdsu-rotate
 [n sequ]
 {:pre [(integer? n) (or (seq? sequ) (vector? sequ) (nil? sequ))]}
 (let [sequ-len (count sequ)]
 (if (zero? sequ-len)
 sequ
 (if (neg? n)
 (sdsu-rotate (- sequ-len (mod (- n) sequ-len)) sequ)
 (concat (drop (mod n sequ-len) sequ)(take (mod n sequ-len) sequ))))))

Tuesday, October 14, 14

rotate

25

(defn sdsu-rotate
 [n xs]
 (let [z (mod n (count xs))]
 (concat (drop z xs) (take z xs))))

(defn sdsu-rotate
 [n xs]
 (apply concat (reverse (split-at (mod n (count xs)) xs)))

Tuesday, October 14, 14

Sum multiples of 3 & 5 less then 1000

26

(defn multiple-of-3-or-5? [n]
 (or (= 0 (mod n 3))
 (= 0 (mod n 5))))

(apply + (filter multiple-of-3-or-5? (range 1000)))

(defn multiple-of-3-or-5? [n]
 (or (zero? (rem n 3))
 (zero? (rem n 5))))

(reduce + (filter multiple-of-3-or-5? (range 1000)))

Tuesday, October 14, 14

Using Lazy

27

(defn sdsu-sum
 [n1 n2 max]
 (reduce + (distinct (concat (range n1 max n1) (range n2 max n2)))))

Tuesday, October 14, 14

Palindrome

28

(defn palindrome?
 [n]
 (let [string-n (str n)]
 (= (seq string-n) (reverse string-n))))

(defn- generate-numbers
 [digits]

 (for [x (range (int (Math/pow 10 digits)) (Math/pow 10 (dec digits)) -1)
 y (range (int (Math/pow 10 digits)) (dec x) -1)]
 (* x y)))

(defn sdsu-palindrome
 [number]
 (let [numbers (generate-numbers number)]
 (reduce max (filter palindrome? numbers))))

Tuesday, October 14, 14

DNA

29

(defn sdsu-dna-count
 [s]
 (when (string? s)
 (into {}
 (for [[k v] (frequencies s)]
 [(keyword (str k)) v]))))

Tuesday, October 14, 14

digits

30

(defn sdsu-digits
 [n b]
 {:pre [(integer? n) (>= n 0) (integer? b) (pos? b)]}
 (if (zero? n)
 [0]
 ((fn acc
 [number base-b-representation]
 (if (zero? number)
 (vec base-b-representation)
 (acc (int (/ number b)) (conj base-b-representation (mod number b))))) n ())))

Tuesday, October 14, 14

31

(defn sdsu-roman-numeral
 [n]
 {:pre [(integer? n) (< n 4000) (pos? n)]}
 ((fn acc [
 remainder ; Remaining (unrepresented) decimal part of the number
 roman-rep ; Roman numeral representation built so far
]
 (cond
 (>= remainder 1000) (acc (- remainder 1000) (str roman-rep "M"))
 (>= remainder 900) (acc (- remainder 900) (str roman-rep "CM"))
 (>= remainder 500) (acc (- remainder 500) (str roman-rep "D"))
 (>= remainder 400) (acc (- remainder 400) (str roman-rep "CD"))
 (>= remainder 100) (acc (- remainder 100) (str roman-rep "C"))
 (>= remainder 90) (acc (- remainder 90) (str roman-rep "XC"))
 (>= remainder 50) (acc (- remainder 50) (str roman-rep "L"))
 (>= remainder 40) (acc (- remainder 40) (str roman-rep "XL"))
 (>= remainder 10) (acc (- remainder 10) (str roman-rep "X"))
 (>= remainder 9) (acc (- remainder 9) (str roman-rep "IX"))
 (>= remainder 5) (acc (- remainder 5) (str roman-rep "V"))
 (>= remainder 4) (acc (- remainder 4) (str roman-rep "IV"))
 (>= remainder 1) (acc (- remainder 1) (str roman-rep "I"))
 :else roman-rep)) n ""))

Tuesday, October 14, 14

