
CS 596 Functional Programming and Design
Fall Semester, 2014

Doc 13 Test, Exceptions, Multimethods
Oct 16, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, October 16, 14

2

Unit Tests

Thursday, October 16, 14

Testing

3

If it is not tested it does not work

Ralph Johnson

If it is not tested it does not exist

Kent Beck

Thursday, October 16, 14

What is wrong with print statements?

4

Class assignment 5- 30 tests

1.5 year project with 10 programers 10,000 tests

How do you run the tests?

How do you see the results of the tests?

Can you run the tests each time you make a change

Print statements do not scale

Thursday, October 16, 14

Everything that could possibly break

Test values
 Inside valid range
 Outside valid range
 On the boundary between valid/invalid

GUIs are very hard to test
 Keep GUI layer very thin
 Unit test program behind the GUI, not the GUI

What to Test

5

Thursday, October 16, 14

Adapted with permission from “A Short Catalog of
Test Ideas” by Brian Marick,
http://www.testing.com/writings.html

Strings
Empty String

Collections
Empty Collection
Collection with one element
Collection with duplicate elements
Collections with maximum possible size

Numbers
Zero
The smallest number
Just below the smallest number
The largest number
Just above the largest number

Common Things Programs Handle Incorrectly

6

Thursday, October 16, 14

http://www.testing.com/writings.html
http://www.testing.com/writings.html

sdsu-rotate-test

7

(deftest sdsu-rotate-test
 (testing "sdsu-rotate"
 (are [n list answer] (= answer (sdsu-rotate n list))
 0 [] []
 1 [] []
 3 [1] [1]
 1 [1 2 3 4] [2 3 4 1]
 2 [1 2 3 4] [3 4 1 2]
 3 [1 2 3 4] [4 1 2 3]
 4 [1 2 3 4] [1 2 3 4]
 5 [1 2 3 4] [2 3 4 1]
 -1 [1 2 3 4] [4 1 2 3]
 -2 [1 2 3 4] [3 4 1 2]
 -3 [1 2 3 4] [2 3 4 1]
)))

Thursday, October 16, 14

8

(deftest sdsu-roman-numeral-test
 (testing "sdsu-roman-numeral"
 (are [n answer] (= answer (sdsu-roman-numeral n))
 1 "I"
 4 "IV"
 30 "XXX"
 40 "XL"
 90 "XC"
 400 "CD"
 900 "CM"
 1901 "MCMI"
)))

Thursday, October 16, 14

9

:reloading (assignment3.core assignment3.core-test)

Testing assignment3.core-test

FAIL in (sdsu-dna-count-test) (core_test.clj:50)
sdsu-dna-count
expected: (= {:T 3, :G 1, :C 2} (sdsu-dna-count "TGCTTC"))
 actual: (not (= {:T 3, :C 2, :G 1} {:A 0, :T 3, :C 2, :G 1}))

FAIL in (sdsu-sum-test) (core_test.clj:22)
sdsu-sum
expected: (= 233168 (sdsu-sum 3 5 1000))
 actual: (not (= 233168 266333))

FAIL in (sdsu-sum-test) (core_test.clj:22)
sdsu-sum
expected: (= 20 (sdsu-sum 2 4 10))
 actual: (not (= 20 32))

FAIL in (sdsu-sum-test) (core_test.clj:22)
sdsu-sum
expected: (= 45 (sdsu-sum 1 1 10))
 actual: (not (= 45 90))

Ran 7 tests containing 39 assertions.
4 failures, 0 errors.

Failed 4 of 39 assertions
Finished at 13:08:14.537 (run time: 1.871s)

Thursday, October 16, 14

Leiningen Projects Include Testing

10

Sets up requirements for tests

Clojure has testing framework

Similar to JUnit

Thursday, October 16, 14

Generated test file: core_test.clj

11

(ns lectureexample.core-test
 (:require [clojure.test :refer :all]
 [lectureexample.core :refer :all]))

(deftest test-add-ten
 (testing "FIXME, I fail."
 (is (= 0 1))))

deftest - defines the test

testing - optional, label for the output

is - testing method

Thursday, October 16, 14

are - Shortcut for multiple is

12

(deftest test-add-ten
 (is (= (add-ten [1 2 3] []) [11 12 13]))
 (is (= (add-ten [1] []) [11]))
 (is (= (add-ten [] []) []))
 (is (= (add-ten nil []) [])

(deftest test-add-ten
 (are [list result] (= (add-ten list []) result)
 [1 2 3] [11 12 13]
 [1] [11]
 [] []
 nil []))

Thursday, October 16, 14

Light Table & Tests

13

Light Table does not run your tests for you :(

Will see two different ways to run the tests

Thursday, October 16, 14

Semi-Manual

14

(ns lectureexample.core-test
 (:require [clojure.test :refer :all]
 [lectureexample.core :refer :all]))

(defn reload-tests
 []
 (use 'lectureexample.core :reload-all)
 (use 'lectureexample.core-test :reload-all)
 (run-tests 'lectureexample.core-test))

(reload-tests)

(deftest test-add-ten
 (is (= (add-ten [1 2 3] []) [11 12 13]))
 (is (= (add-ten [1] []) [11]))
 (is (= (add-ten [] []) []))
 (is (= 1 2))
 (is (thrown? clojure.lang.ArityException (add-ten [1 2]))))

:reload-all
reload defintions of your code

run-tests - runs the test

Thursday, October 16, 14

How to Run test Automatically

15

lein-test-refresh

Leiningen plug-in

Runs tests when your source code files change

Need to run Leiningen command

Need to configure project

Thursday, October 16, 14

project.clj

16

(defproject lectureexample "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.6.0"]
 [org.clojure/tools.trace "0.7.8"]]
 :main ^:skip-aot lectureexample.core
 :target-path "target/%s"
 :profiles {:uberjar {:aot :all}}
 :plugins [[com.jakemccrary/lein-test-refresh "0.5.1"]])

Thursday, October 16, 14

Starting lein-test-refresh

17

In terminal/command line

Go to project directory

cd lectureexample/

Run lein test-refresh

lein test-refresh

Every time you save a source file test-refresh reload code & runs test

Thursday, October 16, 14

18

Some Java

Thursday, October 16, 14

Accessing Static Methods & Fields

19

Static Fields

Class/fieldName

Math/PI

Float/MAX_VALUE

Static Methods

(Class/methodName arg1 arg2 …)

(Double/parseDouble "3.14159")

(Integer/toBinaryString 3)

Thursday, October 16, 14

Accessing Java instance methods

20

(.instanceMethod object arg1 …)

(.toUpperCase "cat")

(.isEmpty [1 2 3])

(.size [1 2 3])

(.get [1 2 3] 1)

Thursday, October 16, 14

Examples

21

(defn decimal-to-hex [x]
(-> x
 Integer/parseInt
 (Integer/toString 16)
 .toUpperCase))

(def iterator (.iterator [1 2 3]))
(while (.hasNext iterator)
 (println (.next iterator)))

Thursday, October 16, 14

22

Exceptions

(defn as-int
 [s]
 (try
 (Integer/parseInt s)
 (catch NumberFormatException e
 (.printStackTrace e))
 (finally
 (println "Attempted to parse as integer: " s))))

Thursday, October 16, 14

Raising an Exception

23

(throw (IllegalStateException. "I don't know what to do!"))

Thursday, October 16, 14

Common Exceptions

24

java.lang.IllegalArgumentException

java.lang.UnsupportedOperationException

java.lang.IllegalStateException

java.io.IOException

Text claims that these handle 90% of cases where you need exceptions

Thursday, October 16, 14

When to Use Exceptions?

25

Googles answer:

Exceptions should be used for situation where a certain method or function
could not execute normally.

Does this mean nil nodes in a tree?

Thursday, October 16, 14

26

Multimethods

Thursday, October 16, 14

27

Example

(defmulti even-odd even?)

(defmethod even-odd true
 [n]
 (str n " is even"))

(defmethod even-odd false
 [n]
 (str n " is odd"))

(even-odd 5) 5 is odd
(even-odd 4) 4 is even

Thursday, October 16, 14

28

Example

(defmulti even-odd even?)

(defmethod even-odd true
 [n]
 (str n " is even"))

(defmethod even-odd false
 [n]
 (str n " is odd"))

dispatch function

value of dispatch function
handled by this method

Thursday, October 16, 14

Default values

29

(defmulti fibonacci identity)

(defmethod fibonacci 0
 [n]
 0)

(defmethod fibonacci 1
 [n]
 1)

(defmethod fibonacci :default
 [n]
 (+ (fibonacci (dec n)) (fibonacci (- n 2))))

(fibonacci 1) 1

(fibonacci 10) 55

Thursday, October 16, 14

Dispatch Function can be any function

30

(defmulti types class)

(defmethod types java.lang.String
 [x]
 "it is a string")

(defmethod types java.lang.Long
 [x]
 "it is a Long")

(defmethod types :default
 [x]
 "Don't know")

(types "ca") "it is a string"
(types 12) "it is a Long"
(types 12.3) "Don't know"

Thursday, October 16, 14

Multiple Arguments

31

(defmulti by-size (fn [a b] (size a)))

(defmethod by-size :small
 [x y]
 "small")

(defmethod by-size :small
 [x y]
 "small")

(defmethod by-size :medium
 [x y]
 "meduim")

(defmethod by-size :defualt
 [x y]
 "large & other")

(defn size
 [x]
 (cond
 (< x 5) :small
 (< x 20) :medium
 (< x 100) :large))

(by-size 2 20) "small"
(by-size 10 20) "meduim"

Thursday, October 16, 14

Vectors as Match

32

(defmulti by-size (fn [a b] [(size a) (size b)]))

(defmethod by-size [:small :small]
 [x y]
 "small-small")

(defmethod by-size [:small :large]
 [x y]
 "small-large")

(defmethod by-size [:medium :meduim]
 [x y]
 "meduim-medium")

(defmethod by-size :default
 [x y]
 "other")

(by-size 2 90) "small-large"
(by-size 10 20) "other"

Thursday, October 16, 14

Warning about defmulti

33

defmulti is define once

If you need to modify your defmulti need to remove it from the bindings

(ns-unmap *ns* 'by-size)

In previous example used

Thursday, October 16, 14

One Last Example

34

(defmulti by-children (fn [[a c b]] [(nil? b) (nil? c)]))

(defmethod by-children [true true]
 [x]
 "no children")

(defmethod by-children [true false]
 [x]
 "right child")

(defmethod by-children [false true]
 [x]
 "left children")

(defmethod by-children [false false]
 [x]
 "both children")

(by-children [1 4 nil]) "right child"
(by-children [1 nil nil]) "no children"

Thursday, October 16, 14

Open-Closed Principle

35

"software entities (classes, modules, functions, etc.) should be open for extension, but
closed for modification"

Wikipedia

Thursday, October 16, 14

36

Some Solutions

Thursday, October 16, 14

rotate

37

(defn sdsu-rotate
 [n sequ]
 {:pre [(integer? n) (or (seq? sequ) (vector? sequ) (nil? sequ))]}
 (let [sequ-len (count sequ)]
 (if (zero? sequ-len)
 sequ
 (if (neg? n)
 (sdsu-rotate (- sequ-len (mod (- n) sequ-len)) sequ)
 (concat (drop (mod n sequ-len) sequ)(take (mod n sequ-len) sequ))))))

Thursday, October 16, 14

rotate

38

(defn sdsu-rotate
 [n xs]
 (let [z (mod n (count xs))]
 (concat (drop z xs) (take z xs))))

(defn sdsu-rotate
 [n xs]
 (apply concat (reverse (split-at (mod n (count xs)) xs)))

Thursday, October 16, 14

Sum multiples of 3 & 5 less then 1000

39

(defn multiple-of-3-or-5? [n]
 (or (= 0 (mod n 3))
 (= 0 (mod n 5))))

(apply + (filter multiple-of-3-or-5? (range 1000)))

(defn multiple-of-3-or-5? [n]
 (or (zero? (rem n 3))
 (zero? (rem n 5))))

(reduce + (filter multiple-of-3-or-5? (range 1000)))

Thursday, October 16, 14

Using Lazy

40

(defn sdsu-sum
 [n1 n2 max]
 (reduce + (distinct (concat (range n1 max n1) (range n2 max n2)))))

Thursday, October 16, 14

Palindrome

41

(defn palindrome?
 [n]
 (let [string-n (str n)]
 (= (seq string-n) (reverse string-n))))

(defn- generate-numbers
 [digits]

 (for [x (range (int (Math/pow 10 digits)) (Math/pow 10 (dec digits)) -1)
 y (range (int (Math/pow 10 digits)) (dec x) -1)]
 (* x y)))

(defn sdsu-palindrome
 [number]
 (let [numbers (generate-numbers number)]
 (reduce max (filter palindrome? numbers))))

Thursday, October 16, 14

DNA

42

(defn sdsu-dna-count
 [s]
 (when (string? s)
 (into {}
 (for [[k v] (frequencies s)]
 [(keyword (str k)) v]))))

Thursday, October 16, 14

digits

43

(defn sdsu-digits
 [n b]
 {:pre [(integer? n) (>= n 0) (integer? b) (pos? b)]}
 (if (zero? n)
 [0]
 ((fn acc
 [number base-b-representation]
 (if (zero? number)
 (vec base-b-representation)
 (acc (int (/ number b)) (conj base-b-representation (mod number b))))) n ())))

Thursday, October 16, 14

44

(defn sdsu-roman-numeral
 [n]
 {:pre [(integer? n) (< n 4000) (pos? n)]}
 ((fn acc [
 remainder ; Remaining (unrepresented) decimal part of the number
 roman-rep ; Roman numeral representation built so far
]
 (cond
 (>= remainder 1000) (acc (- remainder 1000) (str roman-rep "M"))
 (>= remainder 900) (acc (- remainder 900) (str roman-rep "CM"))
 (>= remainder 500) (acc (- remainder 500) (str roman-rep "D"))
 (>= remainder 400) (acc (- remainder 400) (str roman-rep "CD"))
 (>= remainder 100) (acc (- remainder 100) (str roman-rep "C"))
 (>= remainder 90) (acc (- remainder 90) (str roman-rep "XC"))
 (>= remainder 50) (acc (- remainder 50) (str roman-rep "L"))
 (>= remainder 40) (acc (- remainder 40) (str roman-rep "XL"))
 (>= remainder 10) (acc (- remainder 10) (str roman-rep "X"))
 (>= remainder 9) (acc (- remainder 9) (str roman-rep "IX"))
 (>= remainder 5) (acc (- remainder 5) (str roman-rep "V"))
 (>= remainder 4) (acc (- remainder 4) (str roman-rep "IV"))
 (>= remainder 1) (acc (- remainder 1) (str roman-rep "I"))
 :else roman-rep)) n ""))

Thursday, October 16, 14

45

References
vars, atoms, agents, refs

Thursday, October 16, 14

Reference Type Basics

46

reference types and their semantics make it possible to design concurrent programs that take maximum advantage of
the increasingly capable hardware we have available to us, while eliminating entire categories of bugs and failure
conditions that would otherwise go with the territory of dealing with bare threads and locks.

Clojure Reference Types
Identities are represented in Clojure using four reference types: vars, refs, agents, and atoms. All of these are very
different in certain ways, but let’s first talk about what they have in common.

At their most fundamental level, references are just boxes that hold a value, where that value can be changed by
certain functions (different for each reference type):

All references always contain some value (even if that value is nil); accessing one is always done using deref or @:

@(atom 12)
;= 12
@(agent {:c 42})
;= {:c 42}
(map deref [(agent {:c 42}) (atom 12) (ref "http://clojure.org") (var +)])
;= ({:c 42} 12 "http://clojure.org" #<core$_PLUS_ clojure.core$_PLUS_@65297549>)

Dereferencing will return a snapshot of the state of a reference when deref was invoked. This doesn’t mean there’s
copying of any sort when you obtain a snapshot, simply that the returned state—assuming you’re using immutable
values for reference state, like Clojure’s collections—is inviolate, but that the reference’s state at later points in time
may be different.

One critical guarantee of deref within the context of Clojure’s reference types is that deref will never block,
regardless of the change semantics of the reference type being dereferenced or the operations being applied to it in
other threads of execution. Similarly, dereferencing a reference type will never interfere with other operations. This
is in contrast with delays, promises, and futures—which can block on deref if their value is not yet realized—and
most concurrency primitives in other languages, where readers are often blocked by writers and vice versa.

“Setting” the value of a reference type is a more nuanced affair. Each reference type has its own semantics for
managing change, and each type has its own family of functions for applying changes according to those semantics.
Talking about those semantics and their corresponding functions will form the bulk of the rest of our discussion.

All are pointers

Can change pointer to point to different data

Dereferencing will never block

Each type as different way of setting/changing its value

var, ref, atom, agent

Thursday, October 16, 14

Reference Type Basics

47

reference types and their semantics make it possible to design concurrent programs that take maximum advantage of
the increasingly capable hardware we have available to us, while eliminating entire categories of bugs and failure
conditions that would otherwise go with the territory of dealing with bare threads and locks.

Clojure Reference Types
Identities are represented in Clojure using four reference types: vars, refs, agents, and atoms. All of these are very
different in certain ways, but let’s first talk about what they have in common.

At their most fundamental level, references are just boxes that hold a value, where that value can be changed by
certain functions (different for each reference type):

All references always contain some value (even if that value is nil); accessing one is always done using deref or @:

@(atom 12)
;= 12
@(agent {:c 42})
;= {:c 42}
(map deref [(agent {:c 42}) (atom 12) (ref "http://clojure.org") (var +)])
;= ({:c 42} 12 "http://clojure.org" #<core$_PLUS_ clojure.core$_PLUS_@65297549>)

Dereferencing will return a snapshot of the state of a reference when deref was invoked. This doesn’t mean there’s
copying of any sort when you obtain a snapshot, simply that the returned state—assuming you’re using immutable
values for reference state, like Clojure’s collections—is inviolate, but that the reference’s state at later points in time
may be different.

One critical guarantee of deref within the context of Clojure’s reference types is that deref will never block,
regardless of the change semantics of the reference type being dereferenced or the operations being applied to it in
other threads of execution. Similarly, dereferencing a reference type will never interfere with other operations. This
is in contrast with delays, promises, and futures—which can block on deref if their value is not yet realized—and
most concurrency primitives in other languages, where readers are often blocked by writers and vice versa.

“Setting” the value of a reference type is a more nuanced affair. Each reference type has its own semantics for
managing change, and each type has its own family of functions for applying changes according to those semantics.
Talking about those semantics and their corresponding functions will form the bulk of the rest of our discussion.

var, ref, atom, agent

Each type

Can have meta data

Can have watches (observers)
Call specified function when value is change

Can have validator
Enforce constraints on values pointer can point to

Thursday, October 16, 14

Features of each Type

48

Ref Agent Atom Var

Coordinated X

Asynchronous X

Retriable X X

Thread-local X

Synchronous - block until operation completes

Asynchronous - Non blocking, operation can compete on separate thread

Coordinated - Supports transactions

Thread-local - Changes made are local to current thread

Thursday, October 16, 14

Creating & Referencing Each Type

49

(def ref-example (ref 10))
@ref-example
(deref ref-example)

(def agent-example (agent 10))
@agent-example
(deref agent-example)

(def atom-example (atom 10))
@atom-example
(deref atom-example)

(def var-example 10)
var-example Note the difference

Thursday, October 16, 14

Watches

50

(defn cat-watch
 [key pointer old new]
 (println "Watcher" key pointer old new))

(def cat 4)

(add-watch (var cat) :cat cat-watch)

(def cat 10)

(remove-watch (var cat) :cat)

(def cat 20)

Output in Console

Watcher :cat #'user/cat 4 10

Thursday, October 16, 14

Validator

51

(def cat 4)

(set-validator! (var cat) #(> 10 %))

(def cat 9)

(def cat 20) ;;exception

Thursday, October 16, 14

