
CS 596 Functional Programming and Design
Fall Semester, 2014

Doc 14 Some Review
Oct 21, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, October 21, 14

Elements of Functional Programming

2

Pure Functions

First Class Functions

Immutability

Higher-Order Functions

Recursion

Lazy Evaluation

Currying

Memoization

Destructuring

Collection Pipelines

List Compressions

Tuesday, October 21, 14

Basic Data Elements

3

symbols
keywords
literals
lists
vectors
maps
sets

Tuesday, October 21, 14

Symbols

4

Can reference another value
(def foo 12)

(defn bar [n] (inc n))

When evaluated returns the value foo

bar

12

fn

When quoted & evaluated
returns it self

'foo

'bar

foo

bar

Tuesday, October 21, 14

Keywords

5

Like symbols but evaluates to itself

Literal syntax starts with a colon

:foobar
:2
:?
:ThisIsALongKeyWordWhichShowsThatTheCanBeLong

Colon is part of literal syntax, but not the name of the keyword

true

false

(= :cat (keyword "cat"))

(= :cat (keyword ":cat"))

Tuesday, October 21, 14

Collections

6

Immutable

Heterogeneous

Persistent

Vectors

Sets

Maps

Lists

Queues

Tuesday, October 21, 14

Vectors

7

(vector 8 4 2) [8 4 2]

(nth [:a :b :c] 2) :c

(get ["a" "b" "c"] 2) "c"

(["a" "b" "c"] 2) "c"

(nth [:a :b :c] 2 "rat") :c

(nth [:a :b :c] 4 "rat") "rat"

(.indexOf ["a" "b" "c"] "b") 1

(peek ["a" "b" "c"]) "c"

(pop ["a" "b" "c"]) ["a" "b"]

(conj [1 2 3] 4) [1 2 3 4]

(assoc [1 2 3] 0 9) [9 2 3]

Tuesday, October 21, 14

Immutability & Persistence

8

(def a [1 2 3])

(def b (conj a 4))

(def c (assoc b 0 8))

a [1 2 3]

b [1 2 3 4]

c [8 2 3 4]

Java

int[] d = {1, 2, 3};

d[0] = 8;

d {8, 2, 3}

Tuesday, October 21, 14

Sets

9

No duplicates

Fast insert & contains

Tuesday, October 21, 14

Sets

10

(contains? #{1 2} 1) true

(#{2 4} 2) 2

(#{2 4} 3) nil

(get #{1 2} 1) 1

(get #{1 2} 3) nil

(get #{1 2} 3 :not-found) :not-found

(nth #{4 2} 2) 2

(conj #{ 1 2 } 3 4 5) #{1 2 3 4 5}

(disj #{1 2 3} 2) #{1 3}

(clojure.set/intersection #{1 2 3} #{2 4 8}) #{2}

Tuesday, October 21, 14

Maps (Hash Table)

11

{:first-name "Roger"
 :last-name "Whitney" }

{:first-name "Roger",
 :last-name "Whitney" }

{:name {:first "Roger" :last "Whitney" }
 :phone-numbers

["111-2222" "222-3333"]}

{ }

Key-value map

Keys - any value

Values - any value

Fast insert & find

Very common

{ "a" 1, 2 "b", [4 3] :me}

Tuesday, October 21, 14

Maps (Hash Table)

12

(get {:a 1} :a) 1

({:a 1} :a) 1

(:a {:a 1}) 1

({2 "b"} 2) "b"

(2 {2 "b"}) Error

(conj {:a 1 :b 2} {:a 3} {:c 4}) {:c 4, :a 3, :b 2}

(merge {:a 1 :b 2} {:a 3 :c 4}) {:c 4, :a 3, :b 2}

(assoc {:a 1 :b 2} :a 3 :c 4) {:c 4, :a 3, :b 2}

Tuesday, October 21, 14

Naming Conventions

13

Clojure

all-lower-case
words-separated-by-hyphen

Java

camelCase

Clojure

(.indexOf ["a" "b" "c"] "b")

Tuesday, October 21, 14

Lists

14

'(1 2 3)

'("cat" {:a 1})

'(+ 1 2)

Linked List

Fast insert & remove at front

Tuesday, October 21, 14

Explain This

15

(defn foo
 [n]
 "How does this work? Not a compile error."
 (if (> 5 n)
 (println "in if")
 (println "else"))
 "This is not a doc comment"
 (+ 10 n))

Tuesday, October 21, 14

Short Syntax for Lambda

16

(fn [a b] (< (first a) (first b)))

#(< (first %1) (first %2)) %n -> n'th argument

#(+ 2 %) if only one argument can use %

Tuesday, October 21, 14

Closure

17

(defn adder
 [n]
 #(+ n %))

(def add-5 (adder 5))

(add-5 10)

function + reference to its environment

Returns 15

Tuesday, October 21, 14

Rules for Lazy

18

Use lazy-seq at outermost level of lazy squence-producing expression

Use rest instead of next if consuming another sequece

Use higher-order functions when processing sequences

Don't hold on to the head

Tuesday, October 21, 14

19

let
threading macros
Symbols, Values & Binding
Recursive Function verses Recursive Process
Private functions, Multiple arities
Tail Recursion
Variable Number of arguments
Truthiness
Lazy Evaluation
if, when, cond, assoc-in
map, reduce, Filter, apply, cons
Namespaces
Destructuring
pre & post conditions
comp, memoize, partial
future, delay
multifunctions
tests
immutability & persistence

Tuesday, October 21, 14

