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Some Concurrency Background
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Issues with Asynchronous Code
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Error Handing
Read/Write Conflicts
Communications between threads

Joins
Passing data back

Callback Hell
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Callback Hell
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JavaScript problem core.async proposes to solve

Will use examples from Node.js 
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Node.js
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Runs on Chrome’s JavaScript runtime

Goal: fast, scalable networking applications

Event-driven non-blocking I/O 
So lightweight & efficient
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Blocking I/O - Java
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Path file = ...;
String fileContents = null;
try (InputStream in = Files.newInputStream(file);
    BufferedReader reader =
      new BufferedReader(new InputStreamReader(in))) {
    String line = null;
    while ((line = reader.readLine()) != null) {
        fileContents = fileContents + line;
    }
} catch (IOException x) {
    System.err.println(x);
}
return fileContents;
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Blocking I/O - Clojure
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(slurp “someFile.txt”)

(slurp “http://www.sdsu.edu”)
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Non-Blocking I/O - Node.js
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fs.readFile
Reads a file asynchronously 
Need to provide function to process file contents 

function processFooFile(error, fooFileContents) {
 if (error)
  throw error;
 Processes the file contents;
}

fs.readFile(‘filename.txt’, ‘utf-8’, processFooFile)
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Reading Two Files - Node.js
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function processFooFile(error, fooFileContents) {
 function processFoo&Bar(barError, barFileContents) {

if (barError)
  throw barError;
Process foo and bar contents here

 }

 if (error)
  throw error;
   }
 fs.readFile(‘bar.txt’, ‘utf-8’, processFoo&Bar);
}

fs.readFile(‘foo.txt’, ‘utf-8’, processFooFile)

Tuesday, November 4, 14



10

Promise
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Promise
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one-time, single values pipe

(def p (promise))
(realized? p)    false
(deliver p 42)   #<core$promise$reify__1707@3f0ba812: 42>
(realized? p)    true
@p       42
(deliver p 50)   nil
@p       42
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Promise
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Simple way to send data back from thread
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References
agents 
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Agents

Uncoordinated
Asynchronous - run in separate thread

I/O & functions with side affects are safe in agents
Agents are STM-aware

Agents in transactions are only run once
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Agents
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Agents hold data

You send functions to agents to process the data

Processing is done in separate thread
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Sending work to an Agent
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send
Sends to thread pool limited by cores on machine

send-off
Sends to unlimited thread
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Send
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(def a (agent 500)) 
(send a range 1000)
@a

(send a f & args)

Apply f to agent a with args
(apply f a args)
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How does one know when Agent is Done
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(await & agents)

(await-for timeout-ms & agents)

(def a (agent 50000))
(send a #(Thread/sleep %))
(await a)
@a

Tuesday, November 4, 14



Exceptions in Agents
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Agents are run on other thread

Exception in agents are not propagated back to main thread
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agent-error
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(def a (agent 1))

(send a inc)

@a                2

(agent-error a)            nil

(send a (fn [_] (throw (Exception. "something is wrong"))))

@a                2

(agent-error a)   #<Exception java.lang.Exception: something is wrong>

(send a identity)   Exception

Tuesday, November 4, 14



Agent Error Handlers

21

(def a (agent nil
                 :error-mode :continue
                 :error-handler (fn [the-agent exception]
                                  (.println System/out (.getMessage exception)))))
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Example use of Agents - logging changes
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Watches are run on the current thread
I/O (logging) is slow

Use agent to do the logging

 (defn log-reference
     [reference & writer-agents]
     (add-watch reference :log
                (fn [_ reference old new]
                  (doseq [writer-agent writer-agents]
                    (send-off writer-agent write new)))))
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The Write & some Agents
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(defn write
     [^java.io.Writer w & content]
     (doseq [x (interpose " " content)]
       (.write w (str x)))  
     (.write w "\n")
     (.flush w)
     w)

(def console (agent *out*))
(def character-log (agent (clojure.java.io/writer "character-states.log" :append true)))
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(def cat 5)
(log-reference (var cat) console character-log)
(def cat 10)

Tuesday, November 4, 14



25

Communicating Sequential Processes
CSP
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CSP

1978 - C. A. R. Hoare first descriped

Mathematical theory of concurrency

Message passing & Channels

Used to specify & verify Concurrent systems

T9000 Transputer

Influenced design of programming languages

Occam

Go
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core.async
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Added to Clojure 1.5

Provides independent threads of activity
Communicating vai queue like channels

Supports
Real threads & shared use of thread pools
ClojureScript on JS engines (no threads)

Goals
Simplify efficient server-side programs
Simpler & more robust techniques for front-end ClojureScript programming
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core.async Verses agents
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Agents send functions to data

core.async sends data to functions
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core.async
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Not part of the standard library

:dependencies [[org.clojure/clojure "1.6.0"]
                         [org.clojure/core.async "0.1.346.0-17112a-alpha"]]

(ns basiclectures.basic-language.async-example
   (:require [clojure.core.async :as async]))

For Examples
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Channel
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Communication link between producers and consumers

Channels can be
Unbuffered
Buffered
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Types of Buffers
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buffer
blocks/parks when full

dropping-buffer
While full drops items that are added

sliding-buffer
While full drops oldest item when new item added
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Producing a Channel
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(chan)
(chan buf-or-n)

(chan 5)     channel with buffer of size 5

(chan (buffer 3))    channel with buffer of size 3

(chan (dropping-buffer 6))  

(chan (slidding-buffer 2))  
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Reading/Writing Channels
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(>!! channel value)  
Writes value to channel
Blocks if buffer is full (unless buffer is sliding or drop)

(<!! channel)    
Reads a value from channel
Blocks if nothing is available
Returns nil if channel is closed
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Example
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(def test-channel (async/chan 2))

(async/>!! test-channel "hello there")

(async/<!! test-channel)

Tuesday, November 4, 14



Running in other Threads
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futures
async/thread
go block
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async/thread
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(thread & body)

(async/thread (println "Hello"))

Runs body in separate thread

(def adder (async/thread (+ 1 2)))
(async/<!! adder)      returns 3
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(defn producer
  [channel name]
 
  (doseq [x [1 2 "end"]]
    (do 
      (Thread/sleep 100)
      (println  name "producing " x)
      (async/>!! channel x)))
  (async/close! channel))

(defn consumer
  [channel]
  (let [input (async/<!! channel)]
    (println "input" input)
    (when input
      (recur channel))))

(let [channel (async/chan 7)]
  (println "Start")
  (async/thread (producer channel "a"))
  (async/thread (producer channel "b"))
  (async/thread (consumer channel)))
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Issues
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How to tell consumer we are done?

Producers sue thread even when they are idle
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Using Atom
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(defn consumer
  [channel]
  (let [input (atom "start")]
    (while @input
      (do
        (reset! input (async/<!! channel))
        (println "consumming" @input)))))
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go blocks
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(go & body)

Executes body using thread in thread pool

When body blocks thread is released

When body unblocks run on a thread

ClojureScript
Required to use channels
Run on event loop
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go blocks
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(async/go (println “hello”))

(def adder (async/go (+ 1 2)))

(async/<!! adder)
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go blocks
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<!    use to read from channel instead of <!!

>!    use to write to channel instead of >!

(let [c (async/chan)]
  (async/go (>! c "hello"))
  (assert (= "hello" (async/<!! (async/go (<! c)))))
  (close! c))
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>! verses >!!
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(let [c (async/chan)]
  (async/go (>! c "hello")))

(defn hello
 [channel]
 (async/>!! channel “hello”))

(let [c (async/chan)]
  (async/go (hello c)))
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Producer Example
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(let [channel (async/chan 7)]
  (println "Start")
  (async/go (producer channel "a"))
  (async/go (producer channel "b"))
  (async/go (consumer channel)))
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go blocks are lightweight
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(let [n 1000
      cs (repeatedly n async/chan)
      begin (System/currentTimeMillis)]
  (doseq [c cs] (async/go (async/>! c "hi")))

  (dotimes [i n]
    (let [[v c] (async/alts!! cs)]
      (assert (= "hi" v))))
  (println "Read" n "msgs in" (- (System/currentTimeMillis) begin) "ms"))
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alts!! & alts!
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(let [c1 (async/chan)
      c2 (async/chan)]
  (async/thread (while true
            (let [[v ch] (async/alts!! [c1 c2])]
              (println "Read" v "from" ch))))
  (async/>!! c1 "hi")
  (async/>!! c2 "there"))

(alts! channels & {:as opts}

Takes value from one of the channels that have data

(let [c1 (async/chan)
      c2 (async/chan)]
  (async/thread (while true
        (let [[v ch] (async/alts! [c1 c2])]
          (println "Read" v "from" ch))))
  (async/go (async/>! c1 "hi"))
  (async/go (async/>! c2 "there")))
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map, reduce, filter on Channels
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(def simple-chan (async/chan 2))
(def inc-chan (async/map< inc simple-chan))

(async/>!! inc-chan 1)
(async/<!! inc-chan)      returns 2
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Rock Paper Scissors Example
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(def MOVES [:rock :paper :scissors])
(def BEATS {:rock :scissors, :paper :rock, :scissors :paper})

(defn winner
  "Based on two moves, return the name of the winner."
  [[name1 move1] [name2 move2]]
  (cond
   (= move1 move2) "no one"
   (= move2 (BEATS move1)) name1
   :else name2))
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Report - Helper
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(defn report
  "Report results of a match to the console."
  [[name1 move1] [name2 move2] winner]
  (println)
  (println name1 "throws" move1)
  (println name2 "throws" move2)
  (println winner "wins!"))
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Player
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(defn rand-player
  "Create a named player and return a channel to report moves."
  [name]
  (let [out (async/chan)]
    (async/go (while true (async/>! out [name (rand-nth MOVES)])))
    out))
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Judging results
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(defn judge
  "Given two channels on which players report moves, create and return an
   output channel to report the results of each match as [move1 move2 winner]."
  [p1 p2]
  (let [out (async/chan)]
    (async/go
     (while true
       (let [m1 (async/<! p1)
             m2 (async/<! p2)]
         (async/>! out [m1 m2 (winner m1 m2)]))))
    out))
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Playing single game
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(defn init
  "Create 2 players (by default Alice and Bob) and return an output channel 
of match results."
  ([] (init "Alice" "Bob"))
  ([n1 n2] (judge (rand-player n1) (rand-player n2))))

(defn play
  "Play by taking a match reporting channel and reporting the results of the latest 
match."
  [out-chan]
  (apply report (async/<!! out-chan)))

(play (init))
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Playing Multiple Games
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(defn play-many
  "Play n matches from out-chan and report a summary of the results."
  [out-chan n]
  (loop [remaining n
         results {}]
    (if (zero? remaining)
      results
      (let [[m1 m2 winner] (async/<!! out-chan)]
        (recur (dec remaining)
               (merge-with + results {winner 1}))))))
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Multiple Games
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(play-many game 10000) {"Alice" 3323, "Bob" 3326, "no one" 3351}

"Elapsed time: 650.433 msecs"
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rock paper scissors lizard spock
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Try modifying code to play “rock paper scissors lizard spock”
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