
CS 596 Functional Programming and Design
Fall Semester, 2014
Doc 17 Concurrency

Nov 4, 2014
Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, November 4, 14

2

Some Concurrency Background

Tuesday, November 4, 14

Issues with Asynchronous Code

3

Error Handing
Read/Write Conflicts
Communications between threads

Joins
Passing data back

Callback Hell

Tuesday, November 4, 14

Callback Hell

4

JavaScript problem core.async proposes to solve

Will use examples from Node.js

Tuesday, November 4, 14

Node.js

5

Runs on Chrome’s JavaScript runtime

Goal: fast, scalable networking applications

Event-driven non-blocking I/O
So lightweight & efficient

Tuesday, November 4, 14

Blocking I/O - Java

6

Path file = ...;
String fileContents = null;
try (InputStream in = Files.newInputStream(file);
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(in))) {
 String line = null;
 while ((line = reader.readLine()) != null) {
 fileContents = fileContents + line;
 }
} catch (IOException x) {
 System.err.println(x);
}
return fileContents;

Tuesday, November 4, 14

Blocking I/O - Clojure

7

(slurp “someFile.txt”)

(slurp “http://www.sdsu.edu”)

Tuesday, November 4, 14

Non-Blocking I/O - Node.js

8

fs.readFile
Reads a file asynchronously
Need to provide function to process file contents

function processFooFile(error, fooFileContents) {
 if (error)
 throw error;
 Processes the file contents;
}

fs.readFile(‘filename.txt’, ‘utf-8’, processFooFile)

Tuesday, November 4, 14

Reading Two Files - Node.js

9

function processFooFile(error, fooFileContents) {
 function processFoo&Bar(barError, barFileContents) {

if (barError)
 throw barError;
Process foo and bar contents here

 }

 if (error)
 throw error;
 }
 fs.readFile(‘bar.txt’, ‘utf-8’, processFoo&Bar);
}

fs.readFile(‘foo.txt’, ‘utf-8’, processFooFile)

Tuesday, November 4, 14

10

Promise

Tuesday, November 4, 14

Promise

11

one-time, single values pipe

(def p (promise))
(realized? p) false
(deliver p 42) #<core$promise$reify__1707@3f0ba812: 42>
(realized? p) true
@p 42
(deliver p 50) nil
@p 42

Tuesday, November 4, 14

Promise

12

Simple way to send data back from thread

Tuesday, November 4, 14

13

References
agents

Tuesday, November 4, 14

14

Agents

Uncoordinated
Asynchronous - run in separate thread

I/O & functions with side affects are safe in agents
Agents are STM-aware

Agents in transactions are only run once

Tuesday, November 4, 14

Agents

15

Agents hold data

You send functions to agents to process the data

Processing is done in separate thread

Tuesday, November 4, 14

Sending work to an Agent

16

send
Sends to thread pool limited by cores on machine

send-off
Sends to unlimited thread

Tuesday, November 4, 14

Send

17

(def a (agent 500))
(send a range 1000)
@a

(send a f & args)

Apply f to agent a with args
(apply f a args)

Tuesday, November 4, 14

How does one know when Agent is Done

18

(await & agents)

(await-for timeout-ms & agents)

(def a (agent 50000))
(send a #(Thread/sleep %))
(await a)
@a

Tuesday, November 4, 14

Exceptions in Agents

19

Agents are run on other thread

Exception in agents are not propagated back to main thread

Tuesday, November 4, 14

agent-error

20

(def a (agent 1))

(send a inc)

@a 2

(agent-error a) nil

(send a (fn [_] (throw (Exception. "something is wrong"))))

@a 2

(agent-error a) #<Exception java.lang.Exception: something is wrong>

(send a identity) Exception

Tuesday, November 4, 14

Agent Error Handlers

21

(def a (agent nil
 :error-mode :continue
 :error-handler (fn [the-agent exception]
 (.println System/out (.getMessage exception)))))

Tuesday, November 4, 14

Example use of Agents - logging changes

22

Watches are run on the current thread
I/O (logging) is slow

Use agent to do the logging

 (defn log-reference
 [reference & writer-agents]
 (add-watch reference :log
 (fn [_ reference old new]
 (doseq [writer-agent writer-agents]
 (send-off writer-agent write new)))))

Tuesday, November 4, 14

The Write & some Agents

23

(defn write
 [^java.io.Writer w & content]
 (doseq [x (interpose " " content)]
 (.write w (str x)))
 (.write w "\n")
 (.flush w)
 w)

(def console (agent *out*))
(def character-log (agent (clojure.java.io/writer "character-states.log" :append true)))

Tuesday, November 4, 14

24

(def cat 5)
(log-reference (var cat) console character-log)
(def cat 10)

Tuesday, November 4, 14

25

Communicating Sequential Processes
CSP

Tuesday, November 4, 14

26

CSP

1978 - C. A. R. Hoare first descriped

Mathematical theory of concurrency

Message passing & Channels

Used to specify & verify Concurrent systems

T9000 Transputer

Influenced design of programming languages

Occam

Go

Tuesday, November 4, 14

core.async

27

Added to Clojure 1.5

Provides independent threads of activity
Communicating vai queue like channels

Supports
Real threads & shared use of thread pools
ClojureScript on JS engines (no threads)

Goals
Simplify efficient server-side programs
Simpler & more robust techniques for front-end ClojureScript programming

Tuesday, November 4, 14

core.async Verses agents

28

Agents send functions to data

core.async sends data to functions

Tuesday, November 4, 14

core.async

29

Not part of the standard library

:dependencies [[org.clojure/clojure "1.6.0"]
 [org.clojure/core.async "0.1.346.0-17112a-alpha"]]

(ns basiclectures.basic-language.async-example
 (:require [clojure.core.async :as async]))

For Examples

Tuesday, November 4, 14

Channel

30

Communication link between producers and consumers

Channels can be
Unbuffered
Buffered

Tuesday, November 4, 14

Types of Buffers

31

buffer
blocks/parks when full

dropping-buffer
While full drops items that are added

sliding-buffer
While full drops oldest item when new item added

Tuesday, November 4, 14

Producing a Channel

32

(chan)
(chan buf-or-n)

(chan 5) channel with buffer of size 5

(chan (buffer 3)) channel with buffer of size 3

(chan (dropping-buffer 6))

(chan (slidding-buffer 2))

Tuesday, November 4, 14

Reading/Writing Channels

33

(>!! channel value)
Writes value to channel
Blocks if buffer is full (unless buffer is sliding or drop)

(<!! channel)
Reads a value from channel
Blocks if nothing is available
Returns nil if channel is closed

Tuesday, November 4, 14

Example

34

(def test-channel (async/chan 2))

(async/>!! test-channel "hello there")

(async/<!! test-channel)

Tuesday, November 4, 14

Running in other Threads

35

futures
async/thread
go block

Tuesday, November 4, 14

async/thread

36

(thread & body)

(async/thread (println "Hello"))

Runs body in separate thread

(def adder (async/thread (+ 1 2)))
(async/<!! adder) returns 3

Tuesday, November 4, 14

37

(defn producer
 [channel name]

 (doseq [x [1 2 "end"]]
 (do
 (Thread/sleep 100)
 (println name "producing " x)
 (async/>!! channel x)))
 (async/close! channel))

(defn consumer
 [channel]
 (let [input (async/<!! channel)]
 (println "input" input)
 (when input
 (recur channel))))

(let [channel (async/chan 7)]
 (println "Start")
 (async/thread (producer channel "a"))
 (async/thread (producer channel "b"))
 (async/thread (consumer channel)))

Tuesday, November 4, 14

Issues

38

How to tell consumer we are done?

Producers sue thread even when they are idle

Tuesday, November 4, 14

Using Atom

39

(defn consumer
 [channel]
 (let [input (atom "start")]
 (while @input
 (do
 (reset! input (async/<!! channel))
 (println "consumming" @input)))))

Tuesday, November 4, 14

go blocks

40

(go & body)

Executes body using thread in thread pool

When body blocks thread is released

When body unblocks run on a thread

ClojureScript
Required to use channels
Run on event loop

Tuesday, November 4, 14

go blocks

41

(async/go (println “hello”))

(def adder (async/go (+ 1 2)))

(async/<!! adder)

Tuesday, November 4, 14

go blocks

42

<! use to read from channel instead of <!!

>! use to write to channel instead of >!

(let [c (async/chan)]
 (async/go (>! c "hello"))
 (assert (= "hello" (async/<!! (async/go (<! c)))))
 (close! c))

Tuesday, November 4, 14

>! verses >!!

43

(let [c (async/chan)]
 (async/go (>! c "hello")))

(defn hello
 [channel]
 (async/>!! channel “hello”))

(let [c (async/chan)]
 (async/go (hello c)))

Tuesday, November 4, 14

Producer Example

44

(let [channel (async/chan 7)]
 (println "Start")
 (async/go (producer channel "a"))
 (async/go (producer channel "b"))
 (async/go (consumer channel)))

Tuesday, November 4, 14

go blocks are lightweight

45

(let [n 1000
 cs (repeatedly n async/chan)
 begin (System/currentTimeMillis)]
 (doseq [c cs] (async/go (async/>! c "hi")))

 (dotimes [i n]
 (let [[v c] (async/alts!! cs)]
 (assert (= "hi" v))))
 (println "Read" n "msgs in" (- (System/currentTimeMillis) begin) "ms"))

Tuesday, November 4, 14

alts!! & alts!

46

(let [c1 (async/chan)
 c2 (async/chan)]
 (async/thread (while true
 (let [[v ch] (async/alts!! [c1 c2])]
 (println "Read" v "from" ch))))
 (async/>!! c1 "hi")
 (async/>!! c2 "there"))

(alts! channels & {:as opts}

Takes value from one of the channels that have data

(let [c1 (async/chan)
 c2 (async/chan)]
 (async/thread (while true
 (let [[v ch] (async/alts! [c1 c2])]
 (println "Read" v "from" ch))))
 (async/go (async/>! c1 "hi"))
 (async/go (async/>! c2 "there")))

Tuesday, November 4, 14

map, reduce, filter on Channels

47

(def simple-chan (async/chan 2))
(def inc-chan (async/map< inc simple-chan))

(async/>!! inc-chan 1)
(async/<!! inc-chan) returns 2

Tuesday, November 4, 14

Rock Paper Scissors Example

48

(def MOVES [:rock :paper :scissors])
(def BEATS {:rock :scissors, :paper :rock, :scissors :paper})

(defn winner
 "Based on two moves, return the name of the winner."
 [[name1 move1] [name2 move2]]
 (cond
 (= move1 move2) "no one"
 (= move2 (BEATS move1)) name1
 :else name2))

Tuesday, November 4, 14

Source http://tech.puredanger.com/2013/07/10/rps-core-async/

Report - Helper

49

(defn report
 "Report results of a match to the console."
 [[name1 move1] [name2 move2] winner]
 (println)
 (println name1 "throws" move1)
 (println name2 "throws" move2)
 (println winner "wins!"))

Tuesday, November 4, 14

Player

50

(defn rand-player
 "Create a named player and return a channel to report moves."
 [name]
 (let [out (async/chan)]
 (async/go (while true (async/>! out [name (rand-nth MOVES)])))
 out))

Tuesday, November 4, 14

Judging results

51

(defn judge
 "Given two channels on which players report moves, create and return an
 output channel to report the results of each match as [move1 move2 winner]."
 [p1 p2]
 (let [out (async/chan)]
 (async/go
 (while true
 (let [m1 (async/<! p1)
 m2 (async/<! p2)]
 (async/>! out [m1 m2 (winner m1 m2)]))))
 out))

Tuesday, November 4, 14

Playing single game

52

(defn init
 "Create 2 players (by default Alice and Bob) and return an output channel
of match results."
 ([] (init "Alice" "Bob"))
 ([n1 n2] (judge (rand-player n1) (rand-player n2))))

(defn play
 "Play by taking a match reporting channel and reporting the results of the latest
match."
 [out-chan]
 (apply report (async/<!! out-chan)))

(play (init))

Tuesday, November 4, 14

Playing Multiple Games

53

(defn play-many
 "Play n matches from out-chan and report a summary of the results."
 [out-chan n]
 (loop [remaining n
 results {}]
 (if (zero? remaining)
 results
 (let [[m1 m2 winner] (async/<!! out-chan)]
 (recur (dec remaining)
 (merge-with + results {winner 1}))))))

Tuesday, November 4, 14

Multiple Games

54

(play-many game 10000) {"Alice" 3323, "Bob" 3326, "no one" 3351}

"Elapsed time: 650.433 msecs"

Tuesday, November 4, 14

rock paper scissors lizard spock

55

Try modifying code to play “rock paper scissors lizard spock”

Tuesday, November 4, 14

