
CS 596 Functional Programming and Design
Fall Semester, 2014

Doc 21 Macros & Monads
Nov 20, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, November 20, 14

AppsFlyer

2

Mobile Analytics Company

Based in San Francisco

2 Billion events per day

Traffic double in 3 months

Grew from 6 to 50 people past year

Technologies used
Redis, Kafka, Couchbase, CouchDB, Neo4j
ElasticSearch, RabbitMQ, Consul, Docker, Mesos
MongpDB, Riemann, Hadoop, Secor, Cascalog, AWS

Thursday, November 20, 14

AppsFlyer - Python Based

3

Started code base in Python

After two years python could not handle the traffic

Problems caused by
String manipulations
Python memory management

Thursday, November 20, 14

Their options

4

Rewrite parts in C & wrap in Python

Rewrite in programming language more suitable for data proccessing

Wanted to try Functional Programming

Thursday, November 20, 14

Scala vs. OCaml vs. Haskell vs. Clojure

5

Scala
Functional & Object Oriented
They wanted pure Functional

OCaml
Smaller community
Only one thread runs at a time even on multicore

Haskell
Monads made us cringe in fear

Clojure
Runs on JVM
Access to mutable state if needed
Now have 10 Clojure engineers

Thursday, November 20, 14

Monads

6

What are they?

Why do they make engineers cringe in fear?

Thursday, November 20, 14

Function Basics

7

(println (+ 1 2) (+ 4 5))

What does this print out and why?

Thursday, November 20, 14

Function Basics

8

(and (println "A") (println "B"))

What does this print out and why?

Thursday, November 20, 14

Function Basics

9

(def x 5)
(def y 10)
(if (< x y) (+ x y) (sdsu-palindrome y))

Why does the if statement return a value?

Thursday, November 20, 14

Function Basics

10

(-> 25 (+ 3) Math/sqrt)

Thursday, November 20, 14

Control Structures - Lisp, Smalltalk

11

Thursday, November 20, 14

12

Meta

Thursday, November 20, 14

13

Metadata

Data about data

Type declarations
public void foo()

Java annotations

Thursday, November 20, 14

Adding Metadata

14

(def a [1 2 3])

(def b (with-meta [1 2 3] {:foo true}))

(def c ^{:foo true} [1 2 3])

(def d ^:foo [1 2 3])

(= a b c d) true

(identical? a b) false

(identical? b c) false

(meta b) {:foo true}

(meta c) {:end-column 28, :column 21, :line 121, :foo true, :end-line 121}

(meta a) {:end-column 15, :column 8, :line 119, :end-line 119}

Clojure metadata is a map

If map has one value & boolean
Shorten to ^:key

Thursday, November 20, 14

Private, Dynamic is Metadata

15

(defn- foo [] “Example”)

(defn ^:private foo [] “Example”)

(defn ^{:private true} foo [] “Example)

Thursday, November 20, 14

So are Doc comments

16

(defn foo
 "A comment"
 [] 5)

(meta #'foo)

{:ns #<Namespace basiclectures.webcrawler.basic>, :name
foo, :file "/Users/whitney/Courses/596/Fall14/CodeExamples/
basiclectures/src/webcraweler/basic.clj", :end-column 10, :column
1, :line 130, :end-line 130, :arglists ([]), :doc "A comment"}

Thursday, November 20, 14

17

Macros

Thursday, November 20, 14

Clojure Data Structures & Evaluation

18

Literals
Evaluate to themselves
1 “cat” 23.4

Symbols
Resolve to a value in a var
(def foo 5)

Lists
(defn bar [x] (inc x))
Calls to

Function
Special form
Macro

Thursday, November 20, 14

19

Special Forms

Evaluated differently
arguments passed unevaluated

Primitive operations

def
if
do
let
letfn
quote
var
fn
loop
recur
throw
try
monitor-enter
monitor-exit

defn
defmacro
loop
for
doseq
if-let
when-let
if-some
when-some

Thursday, November 20, 14

http://clojuredocs.org/clojure_core/clojure.core/defn
http://clojuredocs.org/clojure_core/clojure.core/defn
http://clojuredocs.org/clojure_core/clojure.core/defmacro
http://clojuredocs.org/clojure_core/clojure.core/defmacro
http://clojuredocs.org/clojure_core/clojure.core/loop
http://clojuredocs.org/clojure_core/clojure.core/loop
http://clojuredocs.org/clojure_core/clojure.core/for
http://clojuredocs.org/clojure_core/clojure.core/for
http://clojuredocs.org/clojure_core/clojure.core/doseq
http://clojuredocs.org/clojure_core/clojure.core/doseq
http://clojuredocs.org/clojure_core/clojure.core/if-let
http://clojuredocs.org/clojure_core/clojure.core/if-let
http://clojuredocs.org/clojure_core/clojure.core/when-let
http://clojuredocs.org/clojure_core/clojure.core/when-let
http://clojure.github.com/clojure/clojure.core-api.html#clojure.core/if-some
http://clojure.github.com/clojure/clojure.core-api.html#clojure.core/if-some
http://clojure.github.com/clojure/clojure.core-api.html#clojure.core/when-some
http://clojure.github.com/clojure/clojure.core-api.html#clojure.core/when-some

C Macros

20

Textually replacement

#define INCREMENT(x) x++

y = INCREMENT(z) y = z++

Thursday, November 20, 14

Clojure Macros

21

Can create their own semantics

At compile time
Macros are given their arguments unevaluated

Macro returns a data structure (function)

At runtime
Macros do not exists

Data structure returned by macro are evaluated

Thursday, November 20, 14

22

Figure 5-1. The Clojure compilation model

Macros being a tool of abstraction, each macro call generally produces code with a larger footprint than the macro call itself. Thus, this
process of replacing macro calls with the code they produce is called macroexpansion . As we first said in The Clojure REPL, all Clojure
code is always compiled, even at the REPL, and macroexpansion is a critical and inseparable part of compilation.

NOTE
The compilation process ensures that any macro calls are replaced wholesale with their expansions long before a program’s
runtime; thus, macros are only ever evaluated at compile time.

What Macros Are Not
Writing code that manipulates code is not a unique feature of Clojure, or Lisps in general. However, not all code-manipulating systems are
created equal.

For example, C has a preprocessor, which does textual substitution of source code with other source code at compile time. Such textual macro
systems are fundamentally less capable than Lisp-style macros, due to their reliance upon string processing rather than working with code as
structured data. Some of the same weaknesses are evident in textual code evaluation mechanisms such as Ruby’s eval, which we contrast
with Clojure macros in Macros Versus Ruby eval.

Similarly, facilities providing code generation are not equivalent to macros. These generally take a high-level representation, say, a formal
grammar or a description of an object model, and produce a body of code that implements it. While these systems are often useful, they often
suffer from a discrete compilation step (whereas macros are folded into the same compilation process as all other Clojure code), siloed data
models (whereas macros just use regular Clojure data structures), and noncomposability (whereas macros can readily be used in conjunction
with each other).

Finally, there are a number of languages that provide compiler APIs, allowing you to modify code written in that language. Examples here
include Java’s annotation processors, Groovy’s AST builders, Template Haskell, and Scala’s compiler plug-ins. These are very powerful

Thursday, November 20, 14

Note

23

Macros are evaluated at compile time

So runtime overhead

Thursday, November 20, 14

Macros & Special forms are not functions

24

 (tester +) 3
 (tester or) Exception Macro
 (tester if) Exception Special form
 (tester 'or) 2
 (tester 'if) 2

(defn tester
 [fun]
 (fun 1 2))

Thursday, November 20, 14

Java Motivation

25

for (int k = 0; k < foo.size(); k++) {
x = foo.get(k);
...

}

boiler plate

for (element : foo) {
...

}

Java programmers had to
live with boiler plate for 8 years

Clojure macros allow you to create
own control structures

Thursday, November 20, 14

Viewing what a Macro does

26

macroexpand-1
Expands the macro once

macroexpand
Expands repeatedly until top level is not a macro

clojure.walk/macroexpand-all
Exapnds until there are no more macros

Thursday, November 20, 14

27

(macroexpand-1 '(cond
 (> x y) (x - y)
 (< x y) (y -x)))

(if (> x y)
(x - y)
(clojure.core/cond

(< x y) (y -x)))

(clojure.walk/macroexpand-all '(cond
 (> x y) (x - y)
 (< x y) (y -x)))

(if (> x y)
(x - y)
(if (< x y)

(y -x)
nil))

Thursday, November 20, 14

28

(clojure.walk/macroexpand-all '(cond
 (> x y) (x - y)
 (< x y) (y -x)
 :default 0))

(if (> x y)
(x - y)
(if (< x y)

(y -x)
(if :default

0
nil)))

Thursday, November 20, 14

29

(macroexpand '(or 1 2)) (let* [or__3975__auto__ 1]
 (if or__3975__auto__
 or__3975__auto__
 (clojure.core/or 2)))

(macroexpand '(if 1 2)) (if 1 2)

 (macroexpand '(when 1 2)) (if 1 (do 2))

Thursday, November 20, 14

When to use Macros

30

Remove Boilerplate code

Domain Specific Languages

Thursday, November 20, 14

Example - Testing

31

(deftest foo-test
 (is (= (foo 0) "No"))
 (is (= (foo 1) "Yes"))
 (is (= (foo 10) "Yes"))
 (is (= (foo -3) "Maybe")))

(deftest foo-test
 [input answer] (= (foo input) answer)
 0 “No”
 1 “Yes”
 10 “Yes”
 -3 “Maybe”)

Thursday, November 20, 14

32

(macroexpand '(are [a b c] (= a (+ b c))
 3 2 1
 6 1 5))

(do
(clojure.test/is (= 3 (+ 2 1)))
(clojure.test/is (= 6 (+ 1 5))))

Thursday, November 20, 14

33

(try
(clojure.core/let [values__7128__auto__ (clojure.core/list 0 1)
 result__7129__auto__ (clojure.core/apply = values__7128__auto__)]
 (if result__7129__auto__
 (clojure.test/do-report {:type :pass, :expected (quote (= 0 1)),
 :actual (clojure.core/cons = values__7128__auto__), :message nil})
 (clojure.test/do-report {:type :fail, :expected (quote (= 0 1)),
 :actual
 (clojure.core/list (quote not)
 (clojure.core/cons (quote =) values__7128__auto__)), :message nil}))
 result__7129__auto__)
(catch java.lang.Throwable t__7156__auto__
 (clojure.test/do-report {:type :error, :expected (quote (= 0 1)),
 :actual t__7156__auto__, :message nil})))

 (macroexpand '(is (= 0 1)))

Thursday, November 20, 14

Defining a Macro when

34

(defmacro when
 "Evaluates test. If logical true, evaluates body in an implicit do."
 {:added "1.0"}
 [test & body]
 (list 'if test (cons 'do body)))

Thursday, November 20, 14

when

35

(defmacro when
 [test & body]
 (list 'if test (cons 'do body)))

(when (= 2 (+ 1 1))
 (print "Hello")
 (println " World!"))

(list 'if
 '(= 2 (+ 1 1))
 (cons 'do
 '((print "Hello")
 (println " World!"))))

(if
 (= 2 (+ 1 1))
 (do
 ((print "Hello")
 (println " World!"))))

Thursday, November 20, 14

Macros

36

Code that produces code

list, cons and ‘ basic tools
Cover most cases
But awkward & lots of boilerplate

So use some macros in writing macros

Thursday, November 20, 14

Problem with Quote

37

(def a 4)

(list 1 2 3 a 5) (1 2 3 4 5)

'(1 2 3 a 5) (1 2 3 a 5)

Thursday, November 20, 14

Syntax quote `, unquote ~

38

(def a 4)

(list 1 2 3 a 5) (1 2 3 4 5)

'(1 2 3 a 5) (1 2 3 a 5)

`(1 2 3 ~a 5) (1 2 3 4 5)

'(1 2 3 ~a 5) (1 2 3 (clojure.core/unquote a) 5)

Thursday, November 20, 14

Syntax quote `, unquote ~

39

 (def a 4)

 (def b 2)

 `(1 2 4 ~(+ a b)) (1 2 4 6)

Inside syntax quote
unquoted elements are evaluated

Thursday, November 20, 14

Example - assert

40

(assert (= 1 1)) nil
(assert (= 1 2)) java.lang.AssertionError: Assert failed: (= 1 2)

(set! *assert* false)
(assert (= 1 2)) nil

verify the correctness of your code

Thursday, November 20, 14

Aside

41

:pre & :post conditions handle most cases were you might use assert

(set! *assert* false)
Also turns off :pre :post conditions

Thursday, November 20, 14

Example

42

(defmacro assert [x]
 (when *assert*
 `(when-not ~x
 (throw (new AssertionError (str "Assert failed: " (pr-str '~x)))))))

(macroexpand '(assert (= 1 2)))

(if (= 1 2)
nil
(do (throw (new java.lang.AssertionError (clojure.core/str
 "Assert failed: " (clojure.core/pr-str (quote (= 1
2))))))))

Thursday, November 20, 14

Namespaces, Quote ‘, Syntax Quote `

43

'(a b c) (a b c)

`(a b c)) (user/a user/b user/c)

Thursday, November 20, 14

Macro Variables

44

(defmacro make-adder [x]
 `(fn [y#] (+ ~x y#)))

(def y 100)

(def add-5 (make-adder 5))

(add-5 10)

Thursday, November 20, 14

Macro Variables

45

(defmacro make-adder [x]
 `(fn [y#] (+ ~x y#)))

(fn* ([y__6894__auto__]
(clojure.core/+ 5 y__6894__auto__)))

 (macroexpand '(make-adder 5))

Thursday, November 20, 14

More Examples

46

(defmacro comment
 "Ignores body, yields nil"
 {:added "1.0"}
 [& body])

(comment
 (println "wow")
 (println "this macro is incredible"))
;=> nil

(+ 1 2) ; this is another type of comment
(+ 1 2) #_(println "this is yet another")

Thursday, November 20, 14

47

(defmacro try-expr [msg form]
 `(try ~(assert-expr msg form)
 (catch Throwable t#
 (do-report {:type :error, :message ~msg,
 :expected '~form, :actual t#}))))

(defmacro is
 ([form] `(is ~form nil))
 ([form msg] `(try-expr ~msg ~form)))

Thursday, November 20, 14

do-while

48

(defmacro do-while [test & body]
 `(loop []
 ~@body
 (when ~test (recur))))

(defn play-game [secret]
 (let [guess (atom nil)]
 (do-while (not= (str secret) (str @guess))
 (print "Guess the secret I'm thinking: ")
 (flush)
 (reset! guess (read-line)))
 (println "You got it!")))

Thursday, November 20, 14

Macro Rules of thumb

49

Don’t create a macro when a function will do
Write an example usage
Expand your example usage by hand
Use

macroexpand
macroexpand-1
clojure.walk/macroexpand-all

Experiment in REPL
Break complecated macros into smaller functions

Thursday, November 20, 14

Mastering Clojure Macros

50

By Colin Jones
August 26, 2014

In Safari Books online

Thursday, November 20, 14

51

Monoids & Monads

Thursday, November 20, 14

52

Monoid

Binary Function
Two parameters

Parameters and returned value have same type

Identity value

Associatively

Integer +

2 + 1

2 + 0

(2+3) + 4 = 2 + (3 + 4)

Thursday, November 20, 14

53

Monoid

Binary Function
Two parameters

Parameters and returned value - same type

Identity value

Associatively

Java String concat

“hi”.concat(“ Mom”);

“hi”.concat(“”)

“hi”.concat(“Mom”.concat(“!”))
“hi”.concat(“Mom”).concat(“!”)

Thursday, November 20, 14

54

Monoid

Binary Function
Two parameters

Parameters and returned value - same type

Identity value

Associatively

Sets union

“hi”.concat(“ Mom”);

“hi”.concat(“”)

“hi”.concat(“Mom”.concat(“!”))
“hi”.concat(“Mom”).concat(“!”)

Thursday, November 20, 14

Monoid

55

Associative binary function F: X*X -> X
that has an identity

Thursday, November 20, 14

Haskell

56

class Monoid m where
 mempty :: m
 mappend :: m -> m -> m
 mconcat :: [m] -> m
 mconcat = foldr mappend mempty

Thursday, November 20, 14

