
CS 696 Functional Programming and Design
Fall Semester, 2015

Doc 2 Clojure Introduction
Aug 28, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, August 25, 15

Clojure

2

Developed by Rich Hickey

Started 2007

Variant of Lisp

Functional programming language

Dynamic typing

Interactive development - REPL

Tight Java Integration

Active development community

Tuesday, August 25, 15

Variants

3

Clojure

Java

ClojureScript

JavaScript

ClojureCLR

.NET

Base language the same

Few changes due differences between Java/Javascript/.NET

Tuesday, August 25, 15

Development Environment

4

IntelliJ
Cursive plugin
https://cursiveclojure.com

Light Table
Clojure/Web IDE
http://lighttable.com/

Command Line

Eclipse
Counterclockwise plugin
https://code.google.com/p/counterclockwise/

Emacs
CIDER

Vim
Fireplace

Leiningen

Night Code

Tuesday, August 25, 15

http://lighttable.com/
http://lighttable.com/

Light Table

5

http://www.lighttable.com

Recommended IDE to start learning Clojure

Tuesday, August 25, 15

Lots of Irritatiing Superfluous Parenthesis-LISP

6

Actually not more that Java's

But only () and they build up
(+ 5 (- 2 (/ 4 (* 2 (inc (read-string "123"))))))

Use editor that is parenthesis aware

Useful forms
let
->

Tuesday, August 25, 15

Resources

7

http://clojure.org

Clojure Home Page

Clojure Cookbook

Safari Books On-line
http://proquest.safaribooksonline.com.libproxy.sdsu.edu/

Tuesday, August 25, 15

Elements of Clojure Code

8

symbols
keywords
literals
lists
vectors
maps
sets

functions
macros
special forms (functions)

Tuesday, August 25, 15

REPL

9

Read-Eval-Print Loop
Light Table - front end to Clojure REPL

"hi there"

42

[1 2 3]

(+1 2)

Executable code (program) in repl

Tuesday, August 25, 15

Clojure Programs

10

Chain of functions calling functions

Tuesday, August 25, 15

Clojure Function Calls

11

foo(1, "cat")

Function
Name

Arguments

C function call

(foo 1 "cat") Clojure function call

Tuesday, August 25, 15

Some Basic Operations

12

Function Result

(+ 1 2) 3

(+ 1 2 4 6) 13

(= "cat" "dog") false

(= 1 1) true

(= 1 1 2) false

(even? 8) true

(/ 10 2) 5

(/ 10 2 3) 5/3

(bit-shift-left 4 1) 8

Tuesday, August 25, 15

Operators

13

No built-in operators

Just functions

(if (> x y)
"cat"
"dog")

true value
(if (> x y)

"cat"
"dog")

false value

Condition

Tuesday, August 25, 15

Assignment

14

(def a 10)

(def b (+ a 12))

(def a 20)

No built-in operators

Just functions

Called a binding which is sort of like assignment

Tuesday, August 25, 15

No Precedence

15

a - b * c + d

(- a (+ (* b c) d)) Clojure expressions read inside out

Will see several ways to change this

Tuesday, August 25, 15

16

Recursion
Higher Order Functions

The Functional Way

Tuesday, August 25, 15

Vectors

17

[4 "cat" \c]

[4, "cat", \c]

[]

Expandable, indexed list

Fast insert at end

Expensive insert in front

Fast indexed lookup

Tuesday, August 25, 15

Vectors

18

(vector 8 4 2) [8 4 2]

(nth [:a :b :c] 2) :c

(first [1 2 3]) 1

(second [1 2 3]) 2

(third [1 2 3]) Error

(last [1 2 3]) 3

(rest [1 2 3]) (2 3)

Tuesday, August 25, 15

Compute the Sum

19

public float sum(ArrayList<float> list) {
float sum = 0;
for (int k = 0; k < list.length; k++)

sum = sum + list.get(k);
return sum;

}

Does not work in
Functional World

No “for” statement

No side effects

Tuesday, August 25, 15

Recursion replaces Iteration

20

(defn sum-1
 [list]
 (if (empty? list)
 0
 (+ (first list) (sum-1 (rest list)))))

(sum-1 [1 2 3]) 6

(sum-1 (range 9900)) Stack over flow

(range 9900) [1 2 3 4 5 ... 9898 9899]

Tuesday, August 25, 15

Second Try

21

(defn sum-2
 [partial-sum list]
 (if (empty? list)
 partial-sum
 (sum-2 (+ partial-sum (first list))
 (rest list))))

(sum-2 0 [1 2 3]) 6

(sum-2 0 (range 9900)) Stack over flow

Tuesday, August 25, 15

Recursive verses Iterative Process

22

(sum-1 [1 2 3])

(+ 1 (sum-1 [2 3]))

(+ 1 (+ 2 (sum-1 [3])))

(+ 1 (+ 2 (+ 3 (sum-1 []))))

(+ 1 (+ 2 (+ 3 0)))

(+ 1 (+ 2 3))

(+ 1 5)

6

(sum-2 0 [1 2 3])

(sum-2 1 [2 3])

(sum-2 3 [3])

(sum-2 6 (sum-2 [])

6

Recursive Process Iterative Process

Tuesday, August 25, 15

Tail Recursion Optimization

23

In a recursive function implementing a iterative process

The compiler can optimize the recursion into iteration

But JVM does not support tail recursion optimization

Tuesday, August 25, 15

recur

24

(defn sum-3
 [accumulator list]
 (if (empty? list)
 accumulator
 (recur (+ accumulator (first list))
 (rest list))))

Replace the recursive call with recur

recur will call the function

But Clojure will convert to iteration

(sum-3 0 [1 2 3]) 6

(sum-3 0 (range 9900)) 49000050

(sum-3 0 (range 100000)) 4999950000

Tuesday, August 25, 15

One Name, Multiple Implementations

25

(defn sum-4
 ([list]
 (sum-4 0 list))
 ([accumulator list]
 (if (empty? list)
 accumulator
 (recur (+ accumulator (first list))
 (rest list)))))

(sum-4 [1 2 3]) 6

(sum-4 0 [1 2 3]) 6

(sum-4 0 (range 100000)) 4999950000

(sum-4 (range 100000)) 4999950000

Tuesday, August 25, 15

Major Points

26

Recursion replaces “for” loops

Accumulators can be used to convert recursive process into iterative process

Tail recursion optimization (recur) can convert iterative process to iterative code

But this is not the way to implement sum

Tuesday, August 25, 15

reduce

27

(reduce + [1 2 3 4 5])

Tuesday, August 25, 15

What versus How

28

(reduce + [1 2 3 4 5]) public float sum(ArrayList<float> list) {
float sum = 0;
for (int k = 0; k < list.length; k++)

sum = sum + list.get(k);
return sum;

}

What How

Less typing

Fewer details

Less cognitive load

More general solution

Code can be optimized

Tuesday, August 25, 15

Higher Order Functions

29

(reduce + [1 2 3 4 5])

Function that acts on functions

Tuesday, August 25, 15

Timing tests

30

Code Time

(sum-3 0 (range 100000)) 54450.6 msecs

(sum-4 0 (range 100000)) 26.1 msecs

(reduce + (range 100000)) 6.5 msecs

Code Time

(sum-4 data) ~55 msecs

(reduce + data) ~22.5 msecs

(def data (range 1000000))

Tuesday, August 25, 15

The Functional Way

31

Raw data Rich set of powerful functions on data

vectors
maps (hash table)
sequences

map
map-indexed
filter
reduce
remove
keep
zipper
drop-while
take-while
partition
interpose
split-at
etc.

Tuesday, August 25, 15

Immediate Goals

32

Recursion

Master use of built-in functions

Get comfortable with higher-order functions.

Tuesday, August 25, 15

Clojure API

33

http://clojure.org/cheatsheet

Tuesday, August 25, 15

http://clojure.org/cheatsheet
http://clojure.org/cheatsheet

4Clojure

34

http://www.4clojure.com

Tuesday, August 25, 15

