CS 696 Functional Programming and Design
Fall Semester, 2015
Doc 2 Clojure Introduction
Aug 28, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, August 25, 15



Clojure

Developed by Rich Hickey
Started 2007

Variant of Lisp

Functional programming language
Dynamic typing

Interactive development - REPL
Tight Java Integration

Active development community

Tuesday, August 25, 15



Variants

Clojure ClojureScript ClojureCLR
A A ﬁ

v
Java JavaScript NET

Base language the same

Few changes due differences between Java/Javascript/.NET

Tuesday, August 25, 15



Development Environment

Eclipse
Counterclockwise plugin
https://code.google.com/p/counterclockwise/

Light Table
Clojure/Web IDE
http://lighttable.com/

Command Line

Intellid
Cursive plugin
https://cursiveclojure.com Leiningen
Night Code
Emacs
CIDER
Vim

Fireplace

Tuesday, August 25, 15


http://lighttable.com/
http://lighttable.com/

Light Table

http://www.lighttable.com

Recommended IDE to start learning Clojure

Instarepl*

55 Anything you type in here will be executed live
;5 immediately with the results shown on the
;5 right.

Tuesday, August 25, 15



Lots of Irritatiing Superfluous Parenthesis-LISP

Actually not more that Java's

But only () and they build up
(+5(-2 (/4 (* 2 (inc (read-string "123"))))))

Use editor that is parenthesis aware

Useful forms

let
->

Tuesday, August 25, 15



Resources

Clojure Home Page

http://clojure.org

Clojure Cookbook

Safari Books On-line
http://proquest.safaribooksonline.com.libproxy.sdsu.edu/

Tuesday, August 25, 15



Elements of Clojure Code

symbols functions

keywords macros

literals special forms (functions)
lists

vectors

maps

sets

Tuesday, August 25, 15



REPL

Read-Eval-Print Loop
Light Table - front end to Clojure REPL

Executable code (program) in repl

"hi there"
42
[12 3]

(+12)

Tuesday, August 25, 15



Clojure Programs

Chain of functions calling functions

Instarepl*

(defn factorial
[n]

(if (= n 1)
(biginteger 1)
(* n (factorial (- n1)))))

Tuesday, August 25, 15



Clojure Function Calls

foo(1, "cat") C function call
\4
(foo 1 "cat") Clojure function call
Function Arguments

Name

Tuesday, August 25, 15



Some Basic Operations

Function Result
(+ | 2) 3

(+ 1 2 46 13
=11) true
=112 false
(even!? 8) true
(/ 10 2) 5

(/ 10 2 3) 5/3
(bit-shift-left 4 1) 8

Tuesday, August 25, 15



Operators

No built-in operators

Just functions

— Condition
(if (> xy) €
"cat" €« true value
Ildog")
false value

Tuesday, August 25, 15



Assignment

No built-in operators

Just functions

(def a 10)
(defb (+a 12))

(def a 20)

Called a binding which is sort of like assignment

Tuesday, August 25, 15



No Precedence

a-b*c+d
\4
(-a(+(* b c) d)) Clojure expressions read inside out

Will see several ways to change this

Tuesday, August 25, 15



Recursion
Higher Order Functions
The Functional Way

Tuesday, August 25, 15



Vectors

Expandable, indexed list
Fast insert at end
Expensive insert in front

Fast indexed lookup

[4 "cat" \C]
[4, "cat", \c]

[]

Tuesday, August 25, 15



Vectors

(vector 8 4 2)
(nth [:a :b :c] 2)
(first [1 2 3])
(second [1 2 3])
(third [1 2 3])
(last [1 2 3])

(rest [I 2 3])

[8 4 2]

Error

(23)

Tuesday, August 25, 15



Compute the Sum

public float sum(ArrayList<float> list) {
float sum = 0;
for (int k = 0; k < list.length; k++)
sum = sum + list.get(k);
return sum;

Does not work in
Functional World

No “for” statement

No side effects

Tuesday, August 25, 15



Recursion replaces Iteration

(defn sum-1
[list]
(if (empty? list)
0
(+ (first list) (sum-1 (rest list)))))

(sum-1[1 2 3]) 6
(sum-1 (range 9900)) Stack over flow

(range 9900) [12345 ... 9898 9899]

20

Tuesday, August 25, 15



Second Try

(defn sum-2
[partial-sum list]
(if (empty? list)
partial-sum
(sum-2 (+ partial-sum (first list))
(rest list))))

(sum-2 0 [1 2 3]) 6

(sum-2 0 (range 9900)) Stack over flow

21

Tuesday, August 25, 15



Recursive verses lterative Process

Recursive Process iterative Process
(sum-1[1 2 3]) (sum-2 0 [1 2 3])

(+ 1 (sum-1[2 3])) (sum-2 1 [2 3])

(+ 1 (+ 2 (sum-1[3]))) (sum-2 3 [3])
(+1(+2(+3(sum-11])))) (sum-2 6 (sum-2 [])
(+1(+2(+3 0)) 6

(+1(+23))

(+1595)

6

22

Tuesday, August 25, 15



Tail Recursion Optimization

In a recursive function implementing a iterative process

The compiler can optimize the recursion into iteration

But JVM does not support tail recursion optimization

23

Tuesday, August 25, 15



r r
ecu Replace the recursive call with recur

(defn sum-3 recur will call the function

[accumulator list]
(if (empty? list)
accumulator
(recur (+ accumulator (first list))
(rest list))))

But Clojure will convert to iteration

(sum-3 0 [1 2 3]) 6

(sum-3 0 (range 9900)) 49000050

(sum-3 0 (range 100000)) 4999950000

24

Tuesday, August 25, 15



One Name, Multiple Implementations

(defn sum-4
([list]
(sum-4 0 list))
([accumulator list]
(if (empty? list)
accumulator
(recur (+ accumulator (first list))

(rest list)))))

(sum-4 [1 2 3]) 6
(sum-4 0 [1 2 3]) 6
(sum-4 (range 100000)) 4999950000

(sum-4 0 (range 100000)) 4999950000

25

Tuesday, August 25, 15



Major Points

Recursion replaces “for” loops

Accumulators can be used to convert recursive process into iterative process

Tail recursion optimization (recur) can convert iterative process to iterative code

But this is not the way to implement sum

26

Tuesday, August 25, 15



reduce

(reduce +[12 34 3])

27

Tuesday, August 25, 15



What versus How

What How

(reduce + [1 2 34 3]) public float sum(ArrayList<float> list) {
float sum = 0;
for (int k = 0; k < list.length; k++)
sum = sum + list.get(k);

_ return sum;
Less typing

Fewer details
Less cognitive load
More general solution

Code can be optimized

28

Tuesday, August 25, 15



Higher Order Functions

Function that acts on functions

(reduce +[1 2 34 3])

29

Tuesday, August 25, 15



Timing tests

Code Time
(sum-3 0 (range 100000)) 54450.6 msecs
(sum-4 0 (range 100000)) 26.1 msecs
(reduce + (range 100000)) 6.5 msecs
(def data (range 1000000))

Code Time
(sum-4 data) ~55 msecs

(reduce + data)

~22.5 msecs

30

Tuesday, August 25, 15




The Functional Way

Raw data Rich set of powerful functions on data

vectors map

maps (hash table) map-indexed

sequences filter
reduce
remove
keep
zipper
drop-while
take-while
partition
iInterpose
split-at
etc.

31

Tuesday, August 25, 15



Immediate Goals

Recursion
Master use of built-in functions

Get comfortable with higher-order functions.

32

Tuesday, August 25, 15



Clojure API

http://clojure.org/cheatsheet

Clojure

Clojure 1.3-1.6 Cheat Sheet (v13)

Download PDF version, Download other versions with tooltips

Documentation

clojure.repl/ doc find-doc apropos source pst
javadoc (foo.bar/ is namespace for

later syms)
Primitives
Numbers
Literals Long: 7, hex Oxff, oct 017, base 2

2r1011, base 36 36rCRAZY BigInt: 7N
Ratio: =-22/7 Double: 2.78 -1.2e-5
BigDecimal: 4.2M

Arithmetic + = * / quot rem mod inc dec max min

Compare = == not= < > <= >= compare

Bitwise bit-{and, or, xor, not, flip, set,

shift-right, shift-left, and-not,
clear, test} (1.6) unsigned-bit-
shift-right

Cast byte short int long float double
biagadec biagint num rationalize

f-- - - e ——
| Search |
Download
Google Group
Videos

Contrib Libraries

Transients (clojure.org/transients)

Create transient persistent!

Change conj! pop! assoc! dissoc! disj! Note:

always use return value for later
changes, never originall!

Misc

Compare = == identical? not= not compare

clojure.data/diff

Test true? false? instance? nil? (1.6) some?
Sequences
Creating a Lazy Seq

From seq vals keys rseq subseqg rsubseq
collection

From lazy-seq repeatedly iterate
producer

fn

Tuesday, August 25, 15


http://clojure.org/cheatsheet
http://clojure.org/cheatsheet

4Clojure
#3

Intro to Strings

http://www.4clojure.com
Difficulty: Elementary

Topics:

Clojure strings are Java strings. This means that you can use any of the Java string methods
on Clojure strings.

O (= __ (.toUpperCase "hello world"))

Code which fills in the blank:

34

Tuesday, August 25, 15



