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Clojure
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Developed by Rich Hickey

Started 2007

Variant of Lisp

Functional programming language

Dynamic typing

Interactive development - REPL

Tight Java Integration

Active development community
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Variants
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Clojure

Java

ClojureScript

JavaScript

ClojureCLR

.NET

Base language the same

Few changes due differences between Java/Javascript/.NET

Tuesday, August 25, 15



Development Environment
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IntelliJ
Cursive plugin
https://cursiveclojure.com

Light Table
Clojure/Web IDE
http://lighttable.com/

Command Line

Eclipse
Counterclockwise plugin
https://code.google.com/p/counterclockwise/

Emacs
CIDER

Vim
Fireplace

Leiningen

Night Code
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Light Table
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http://www.lighttable.com

Recommended IDE to start learning Clojure
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Lots of Irritatiing Superfluous Parenthesis-LISP
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Actually not more that Java's

But only () and they build up
(+ 5 (- 2 (/ 4 (* 2 (inc (read-string "123"))))))

Use editor that is parenthesis aware

Useful forms
let
->
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Resources
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http://clojure.org

Clojure Home Page

Clojure Cookbook

Safari Books On-line
http://proquest.safaribooksonline.com.libproxy.sdsu.edu/
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Elements of Clojure Code
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symbols
keywords
literals
lists
vectors
maps
sets

functions
macros
special forms (functions)
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REPL
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Read-Eval-Print Loop
Light Table - front end to Clojure REPL

"hi there"

42

[1 2 3]

(+1 2)

Executable code (program) in repl
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Clojure Programs
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Chain of functions calling functions
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Clojure Function Calls
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foo(1, "cat")

Function
Name

Arguments

C function call

(foo   1   "cat") Clojure function call
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Some Basic Operations
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Function Result

(+  1  2) 3

(+  1  2  4  6) 13

(=  "cat"  "dog") false

(=  1  1 ) true

(=  1  1  2) false

(even? 8) true

(/  10  2) 5

(/  10  2  3) 5/3

(bit-shift-left  4  1) 8
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Operators
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No built-in operators

Just functions

(if (> x y)
"cat"
"dog")

true value
(if (> x y)

"cat"
"dog")

false value

Condition
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Assignment
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(def a 10)

(def b  (+ a 12))

(def a 20)

No built-in operators

Just functions

Called a binding which is sort of like assignment
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No Precedence
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a - b * c + d

(- a (+ (*  b  c)  d)) Clojure expressions read inside out

Will see several ways to change this
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Recursion
Higher Order Functions

The Functional Way
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Vectors
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[4 "cat" \c]

[4, "cat", \c]

[ ]

Expandable, indexed list

Fast insert at end

Expensive insert in front

Fast indexed lookup
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Vectors
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(vector 8 4 2) [8 4 2]

(nth [:a :b :c] 2) :c

(first [1 2 3]) 1

(second [1 2 3]) 2

(third [1 2 3]) Error

(last [1 2 3]) 3

(rest [1 2 3]) (2 3)
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Compute the Sum
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public float sum(ArrayList<float> list) {
float sum = 0;
for (int k = 0; k < list.length; k++)

sum = sum + list.get(k);
return sum;

}

Does not work in 
Functional World

No “for” statement

No side effects
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Recursion replaces Iteration
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(defn sum-1 
  [list]
  (if (empty? list)
    0 
    (+ (first list) (sum-1 (rest list)))))

(sum-1 [1 2 3])    6

(sum-1 (range 9900))   Stack over flow

(range 9900)   [1 2 3 4 5 ... 9898 9899]
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Second Try
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(defn sum-2 
  [partial-sum list]
  (if (empty? list)
    partial-sum
    (sum-2 (+ partial-sum (first list))
           (rest list))))

(sum-2 0 [1 2 3])   6

(sum-2 0 (range 9900)) Stack over flow

Tuesday, August 25, 15



Recursive verses Iterative Process 
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(sum-1 [1 2 3])

(+ 1 (sum-1 [2 3]))

(+ 1 (+ 2 (sum-1 [3])))

(+ 1 (+ 2 (+ 3 (sum-1 []))))

(+ 1 (+ 2 (+ 3  0)))

(+ 1 (+ 2 3))

(+ 1 5)

6

(sum-2 0 [1 2 3])

(sum-2 1 [2 3])

(sum-2 3 [3])

(sum-2 6 (sum-2 [])

6

Recursive Process Iterative Process
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Tail Recursion Optimization
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In a recursive function implementing a iterative process

The compiler can optimize the recursion into iteration

But JVM does not support tail recursion optimization
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recur
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(defn sum-3 
  [accumulator list]
  (if (empty? list)
    accumulator
    (recur (+ accumulator (first list))
           (rest list))))

Replace the recursive call with recur

recur will call the function

But Clojure will convert to iteration

(sum-3 0 [1 2 3])    6

(sum-3 0 (range 9900))  49000050

(sum-3 0 (range 100000))  4999950000
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One Name, Multiple Implementations
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(defn sum-4
  ([list]
   (sum-4 0 list))
  ([accumulator list]
   (if (empty? list)
    accumulator
    (recur (+ accumulator (first list))
           (rest list)))))

(sum-4  [1 2 3])    6

(sum-4  0 [1 2 3])    6

(sum-4 0 (range 100000))  4999950000

(sum-4 (range 100000))  4999950000
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Major Points
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Recursion replaces “for” loops

Accumulators can be used to convert recursive process into iterative process

Tail recursion optimization (recur) can convert iterative process to iterative code

But this is not the way to implement sum
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reduce
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(reduce + [1 2 3 4 5])
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What versus How
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(reduce + [1 2 3 4 5]) public float sum(ArrayList<float> list) {
float sum = 0;
for (int k = 0; k < list.length; k++)

sum = sum + list.get(k);
return sum;

}

What How

Less typing

Fewer details

Less cognitive load

More general solution

Code can be optimized
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Higher Order Functions
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(reduce + [1 2 3 4 5])

Function that acts on functions
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Timing tests
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Code Time

(sum-3 0 (range 100000)) 54450.6 msecs

(sum-4 0 (range 100000)) 26.1 msecs

(reduce + (range 100000)) 6.5 msecs

Code Time

(sum-4  data) ~55 msecs

(reduce + data) ~22.5 msecs

(def data (range 1000000))

Tuesday, August 25, 15



The Functional Way
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Raw data Rich set of powerful functions on data

vectors
maps (hash table)
sequences

map
map-indexed
filter
reduce
remove
keep
zipper
drop-while
take-while
partition
interpose
split-at
etc.
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Immediate Goals
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Recursion

Master use of built-in functions

Get comfortable with higher-order functions.
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Clojure API
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http://clojure.org/cheatsheet
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4Clojure
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http://www.4clojure.com
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