
CS 696 Functional Design & Programming
Fall Semester, 2015

Doc 4 Functions
Sep 3, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, September 3, 15

REPL State

2

Lighttable
REPL

(defn b [n] (inc n)) (defn b [n] (inc n))

(b 10) 11

Restart
Lighttable

Thursday, September 3, 15

REPL State

3

Lighttable
REPL

(defn b [n] (inc n)) (defn b [n] (inc n))

(b 10) 11

Restart
Lighttable

Compile Error
Can't find b

Thursday, September 3, 15

Common Operations on Collections

4

Combine elements into one result
sum all elements,
min

Transform each element
add 10 to each element

Select all elements that meet a condition
all elements greater than 10

Select one elements that meet a condition
First element greater than 10

Group elements by some criteria
group strings by size

Pass each element as argument to function
Print each element to standard out

Thursday, September 3, 15

Map, Reduce, Filter

5

Higher order functions

Very important

Map
Apply a function to each element of a collection, return resulting collection
Ruby - collect, map
Smalltalk - collect

Filter
Returns elements of collection that make

Reduce
Applies function

Thursday, September 3, 15

Reduce

6

(reduce + [1 2 3 4]) 10

(reductions + [1 2 3 4]) (1 3 6 10)

(reduce small-add [1 2 3 4 5 6]) 6

(defn small-add
 [subresult x]
 (if (< x 4)
 (+ subresult x)
 (reduced subresult)))

Thursday, September 3, 15

Map

7

Map - the noun

{:a 1 :c 10}

Map - the verb

(map inc [1 2 3]) (2 3 4)

Thursday, September 3, 15

Map - the Verb

8

map Returns lazy sequence
mapv Returns vector
pmap Done in parallel, semi-lazy
map-indexed f gets index & element

(map f coll)
(map f c1 c2)
(map f c1 c2 c3)
(map f c1 c2 c3 & colls)

(map inc [1 2 3]) (2 3 4)

(map + [1 2 3] [4 5 6]) (5 7 9)

(map + [1 2 3 4 5] [4 5 6]) (5 7 9)

(map inc #{1 2 3}) (2 4 3)

(map + [1 2 3] #{4 5 6}) (5 8 8)

Thursday, September 3, 15

map-indexed

9

(map-indexed (fn [index item] {:index index :item item}) [1 2 3])

({:index 0, :item 1} {:index 1, :item 2} {:index 2, :item 3})

Thursday, September 3, 15

pmap

10

Distributes work among cores, not separate processors/machines

Operation needs to be computationally intense

(time (doall (map inc (range 10000)))) "Elapsed time: 4.73 msecs"

(time (doall (pmap inc (range 10000)))) "Elapsed time: 529.905 msecs"

Thursday, September 3, 15

Parallel Example

11

(defn long-running-job [n]
 (Thread/sleep 3000) ; wait for 3 seconds
 (+ n 10))

(time (doall (map long-running-job (range 4))))

(time (doall (pmap long-running-job (range 4))))

12.005 secs

3.01 secs

(time (doall (map long-running-job (range 8)))) 24.005 secs

(time (doall (pmap long-running-job (range 8)))) 3.01 secs

(time (doall (pmap long-running-job (range 64)))) 6.01 secs

Thursday, September 3, 15

Since the job is not doing any real work pmap performs very well. It can use multiple threads on one processor and the threads
can all perform at the same time

Slightly More Realistic Example

12

(defn long-running-job
 [n]
 (reduce + (take 10000000 (iterate #(Math/sin %) n))))

(time (doall (map long-running-job (range N))))
(time (doall (pmap long-running-job (range N))))

N map time secs pmap time secs

2 7.5 4.8

4 15.3 10.1

2.13 GHz Intel Core 2 Duo

Thursday, September 3, 15

Partition Size

13

One can control the size of data send to each thread

partition-all

Thursday, September 3, 15

filter

14

(filter even? [1 2 3 4 5 6 7])

(first (filter even? [1 2 3 4 5 6 7]))

(filter #{3 5 9 12} [1 2 3 4 5 6 7])

(2 4 6)

2

(3 5)

(remove even? [1 2 3 4 5 6 7]) (1 3 5 7)

(keep even? [1 2 3 4 5 6 7]) (false true false true false true false)

fliterv returns vector of results instead of lazy sequence

Thursday, September 3, 15

Specialized filter functions

15

(take-while neg? [-2 -1 0 -1 -2 3]) (-2 -1)

(take-while neg? [-2 -1 0 1 2 3]) (-2 -1)

(drop-while neg? [-1 -2 -6 -7 1 2 3 4 -5 -6 0 1]) (1 2 3 4 -5 -6 0 1)

(split-with #(< % 3) [1 2 3 4 5 1]) [(1 2) (3 4 5 1)]

[(take-while pred coll) (drop-while pred coll)](split-with pred coll)

Thursday, September 3, 15

Tests

16

(every? even? '(2 4 6)) true

(every? even? '(2 4 7)) false

(every? #{1 2} [1 2 1]) true

(some even? '(2 4 7)) true

(some even? '(1 5 7)) nil

not-every?
not-any?

Thursday, September 3, 15

partition

17

(partition n coll)
(partition n step coll)
(partition n step pad coll)

(partition 4 (range 20))
 ((0 1 2 3) (4 5 6 7) (8 9 10 11) (12 13 14 15) (16 17 18 19))

(partition 9 (range 20))
 ((0 1 2 3 4 5 6 7 8) (9 10 11 12 13 14 15 16 17))

(partition 5 3 (range 20))
 ((0 1 2 3 4) (3 4 5 6 7) (6 7 8 9 10) (9 10 11 12 13) (12 13 14 15 16) (15 16 17 18 19))

(partition 9 9 [1 1 1] (range 20))
 ((0 1 2 3 4 5 6 7 8) (9 10 11 12 13 14 15 16 17) (18 19 1 1 1))

Thursday, September 3, 15

For

18

(for [x [2 3 4]]
 x)

(2 3 4)

(for [x [2 3 4]
 y [:a :b]]
 [x y])

([2 :a] [2 :b] [3 :a] [3 :b] [4 :a] [4 :b])

(for [x [2 4 6]
 y [5 9]]
 (* x y))

(10 18 20 36 30 54)

(for [x [0 1 2 3 4]
 :let [y (* x 3)]
 :when (even? y)]
 y)

(0 6 12)

Thursday, September 3, 15

For - :while & :when

19

(for [x [0 1 2]
 y [0 1 2]
 :when (not= x y)]
 [x y])

([0 1] [0 2] [1 0] [1 2] [2 0] [2 1])

(for [x [0 1 2]
 y [0 1 2]
 :while (not= x y)]
 [x y])

([1 0] [2 0] [2 1])

Thursday, September 3, 15

iterate

20

(take 5 (iterate inc 2)) (2 3 4 5 6)

(take 4 (iterate (partial + 2) 0)) (0 2 4 6)

Thursday, September 3, 15

When Processing Collections Consider Using

21

map
reduce
filter
for
some
repeatedly
sort-by
keep
take-while
drop-while

Thursday, September 3, 15

Common Operations on Collections

22

Combine elements into one result

Transform each element

Select all elements that meet a condition

Select one elements that meet a condition

Group elements by some criteria

Pass each element as argument to function

reduce

map

for, doseq

filter, take-while, drop-while

(first (filter condition xs))

group-by, partition-by
partition

Thursday, September 3, 15

Read from inside out

23

(defn calculate
 [a b c d]
 (+ (/ (+ a b) c) d))

let
->
->>

Thursday, September 3, 15

let

24

Allows you to
compute partial results
give results names

Compute average of three numbers

(defn average
[a b c]
(/ (+ a b c) 3))

(defn average
 [a b c]
 (let [sum (+ a b c)
 size 3]
 (/ sum size)))

Thursday, September 3, 15

Using let

25

(defn calculate
 [a b c d]
 (+ (/ (+ a b) c) d))

(defn calculate-2
 [a b c d]
 (let [a+b (+ a b)
 divide-c (/ a+b c)
 plus-d (+ divide-c d)]
 plus-d))

Thursday, September 3, 15

-> Threading macro

26

(-> x)
(-> x form1 … formN)

Inserts x as second element in form1

Then inserts form1 as second element in form2

etc.

Thursday, September 3, 15

-> Example

27

(def c 5)

(-> c

(+ 3)

(/ 2)

(- 1))

(+ c 3)

(/ 8 2)

(- 4 1)

Thursday, September 3, 15

-> Example

28

(def c 5)

(-> c

(+ 3)

(/ 2)

dec)

(+ c 3)

(/ 8 2)

(dec 4)

Thursday, September 3, 15

-> Example

29

(-> "a b c d"

.toUpperCase

(.replace "A" "X")

(.split " ")

first)

(.toUpperCase "a b c d")

(.replace "A B C D" "A" "X")

(.split "X B C D" " ")

(first {"X", "B", "C", "D"})

Thursday, September 3, 15

From Clojure Docs

-> Example

30

(def person
 {:name "Mark Volkmann"
 :address {:street "644 Glen Summit"
 :city "St. Charles"
 :state "Missouri"
 :zip 63304}
 :employer {:name "Object Computing, Inc."
 :address {:street "12140 Woodcrest Dr."
 :city "Creve Coeur"
 :state "Missouri"
 :zip 63141}}})

(-> person :employer :address :city)

Thursday, September 3, 15

From Clojure Docs

->> Threading macro

31

(->> x)
(->> x form1 … formN)

Inserts x as last element in form1

Then inserts form1 as last element in form2

etc.

Thursday, September 3, 15

->> Example

32

(def c 5)

(->> c

(+ 3)

(/ 2)

(- 1))

(+ 3 c)

(/ 2 8)

(- 1 1/4)

Thursday, September 3, 15

as-> Allow Threading in different locations

33

(as-> 5 c

(+ 3 c)

(/ c 2)

(- c 1))

(+ 3 5)

(/ 8 2)

bind 8 to c

bind 5 to c

bind 4 to c

(- 4 1) return 3

Thursday, September 3, 15

Multiple lines

34

(defn average
 [a b c]
 (println (str "a is " a)
 (+ 1 3)
 (/ (+ a b c) 3))

(average 1 2 3) returns 2
prints on standard out

a is 1

Thursday, September 3, 15

Why not use def & multiple lines?

35

(defn average
 [a b c]
 (let [sum (+ a b c)
 size 3]
 (/ sum size)))

(average 1 2 3) 2

sum Error

size Error

(defn average-bad
 [a b c]
 (def sum (+ a b c))
 (def size 3)
 (/ sum size))

(average-bad 1 2 3) 2

sum 6

size 3

def defines global names/values let defines local names/values

Don't use def inside functions

Thursday, September 3, 15

Symbols, Values & Binding

36

Symbols reference a value (def foo "hi")

(def bar (fn [n] (inc n)))foo & bar are symbols

They are bound to values

Expession Evaluated Result

foo "hi"

"'foo foo

bar fn

(bar 12) 13

Thursday, September 3, 15

Binding & Shadowing

37

Before function x= 1
(def x 1)

(defn shadow
 [x]
 (println "Start function x=" x)
 (let [x 20]
 (println "In let x=" x))
 (println "After let x=" x))

(println "Before function x=" x)
(shadow 10)
(println "After function x=")

Start function x= 10

In let x= 20

After let x= 10

After function x= 1

Thursday, September 3, 15

Bindings, Shadowing & Functions

38

(dec 10)

(let [dec "December"
 test (dec 10)]
 test)

Compile Error

(dec 10)

(def dec "December")

(dec 10)

(clojure.core/dec 10)

Compile Error

(def + -)
(+ 4 3) 1

Thursday, September 3, 15

