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Destructuring - Positional

2

(let [[a b c] (range 5)]
  (println "a b c are: " a b c))

a b c are:  0 1 2

(let [[a b c :as all] [1 2 3 4 5]]
  (println "a b c are:" a b c)
  (println "all is:" all))

a b c are:  1 2 3
all is: [1 2 3 4 5]

(let [[a b c & more :as all] (range 5)]
  (println "a b c are:" a b c)
  (println "more is:" more))

(let [[a b c & more :as all] (range 5)]
  (println "a b c are:" a b c)
  (println "more is:" more)
  (println "all is:" all))

a b c are:  0 1 2
more is: (3 4)

a b c are:  0 1 2
more is: (3 4)
all is: (0 1 2 3 4)
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Destructuring - Positional

3

(defn destructuring
  [[a b c & more :as all]   z]
  (println "a b c are:" a b c)
  (println "more is:" more)
  (println "all is:" all)
  (println "z is:" z))

(destructuring [1 2 3 4 5] "cat")

a b c are: 1 2 3
more is: (4 5)
all is: [1 2 3 4 5]
z is: cat
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Associative Destructuring

4

(let [{first 0, third 2, last 4} [1 2 3 4 5]]
  [first third last])

[1 3 5]

Index
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Destructuring - Maps

5

(def guys-name-map {:first-name "Guy" :middle-name "Lewis" 
                    :last-name "Steele"})

(let [{l-name :last-name, f-name :first-name} guys-name-map]
  (str f-name " "  l-name))

(let [{:keys [last-name first-name]} guys-name-map]
  (str first-name " " last-name))
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Destructuring - :keys, :strs, :syms

6

[{:keys [a b c]} map]

[{:strs [a b c]} map]

[{:syms [a b c]} map]

a, b, c get values at keys :a :b :c in map

a, b, c get values at keys "a" "b" "c" in map

a, b, c get values at keys 'a 'b 'c in map
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Destructuring :as - The Entire map

7

(def guys-name-map {:first-name "Guy" :middle-name "Lewis" 
                    :last-name "Steele"})

(let [{l-name :last-name, f-name :first-name :as whole-name} guys-name-map]
  (println f-name " "  l-name)
  whole-name)

;; Guy Steele
;;{:first-name "Guy", :middle-name "Lewis", :last-name "Steele"}
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Destructuring :or - Default Values

8

(def guys-name-map {:first-name "Guy" :middle-name "Lewis" 
                    :last-name "Steele"})

(let [{l-name :last-name, title :title,
   :or {title "Mr."} guys-name-map]
  (str title " " f-name " "  l-name))
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Battleship Example
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The Problem

10

Context - Writing a battleship game

Need a function that determines 
Is an enemy ship within range of our ships weapon
But weapon has a blast area so cannot use weapon if

Enemy ship is to close to us or other friendly ships
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First Pass

11

range

)LJXUH ���� 7KH SRLQWV LQ UDQJH RI D VKLS ORFDWHG DW WKH RULJLQ

Assume we are at origin
Given a point & range
Is point within range

Point - [x y]

(defn in-range-1
  [position range]
  (let [pos-x (first position)
        pos-y (last position)
        target-distance (Math/sqrt (+ (* pos-x pos-x) (* pos-y pos-y)))]
    (< target-distance range)))

(in-range-1 [1 1] 1)

(in-range-1 [1 1] 2)

false

true
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Second Pass

12

Let our position be any location

(defn in-range-2
  [position own-position range]
  (let [pos-x (first position)
        pos-y (last position)
        own-x (first own-position)
        own-y (last own-position)
        dx (- pos-x own-x)
        dy (- pos-y own-y)
        target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
    (< target-distance range)))

This is a Java program
using Clojure syntax
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Second Pass - a

13

Using destructuring 

(defn in-range-2a
  [[pos-x pos-y] [own-pos-x own-pos-y] range]
  (let [dx (- own-pos-x pos-x)
        dy (- own-pos-y pos-y)
        target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
    (< target-distance range)))

What do we gain? lose?
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Second Pass - b

14

With map

(defn in-range-2b
  [position own-position range]
  (let [[dx dy] (map - position own-position)
        target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
    (< target-distance range)))

What do we gain? lose?
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Second Pass - c

15

(defn in-range-2c
  [position own-position range]
  (let [delta (map - position own-position)
        target-distance (Math/sqrt (reduce + (map * delta delta)))]
    (< target-distance range)))

Using map & reduce

What do we gain? lose?
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Third Pass

16

minD

range

Friendly

)LJXUH ���� $YRLGLQJ HQJDJLQJ HQHPLHV WRR FORVH WR WKH VKLS

(defn in-range-3
  [safe-distance range own-position position friend-position]
  (let [delta (map - position own-position)
        target-distance  (Math/sqrt (reduce + (map * delta delta)))
        friend-delta (map - position friend-position)
        target->friend  (Math/sqrt (reduce + (map * friend-delta friend-delta)))]
    (and 
     (< safe-distance target->friend)
     (< safe-distance target-distance  range))))
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Third Pass

17

minD

range

Friendly

)LJXUH ���� $YRLGLQJ HQJDJLQJ HQHPLHV WRR FORVH WR WKH VKLS

(defn distance-between
  [a b]
  (let [delta (map - a b)]
    (Math/sqrt (reduce + (map * delta delta)))))

(defn in-range-3a
  [safe-distance range self target friend]
  (and 
     (< safe-distance (distance-between friend target))
     (< safe-distance (distance-between self target)  range)))

(def in-torpedo-range (partial in-range-3a 1.5 20))
(def in-cannon-range (partial in-range-3a 3 500))
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What is the Abstraction?

18

What are we doing?

Dealing with circles shapes

Union
Intersection
Complement

Is a point in a shape
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circle - returns a function

19

(defn circle 
  ([radius]
   (circle [0 0] radius))
  ([center radius]
  (fn 
    [point]
    (<= (distance-between center point) radius))))

(def small-circle (circle 1))

(small-circle [0.5 0])   true
(small-circle [1 2])   false
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outside

20

(defn outside 
  [shape]
  (complement shape))

(def small-circle (circle 1))

((outside small-circle) [0.5 0])   false
((outside small-circle) [1 2])   true
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union

21

(defn union
  ([shape]
   shape)

  ([shape-a shape-b]
  (fn [point]
    (or (shape-a point) (shape-b point))))

  ([shape-a shape-b & shapes]
   (fn [point]
     (let [all-shapes (conj shapes shape-a shape-b)]
       (reduce #(or %1 (%2 point)) false all-shapes)))))
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Higher Level in range

22

(defn in-range-4
  [safe-distance range self target friend]
  (let [self-safe-zone (outside (circle self safe-distance))
        friend-safe-zone (outside (circle friend safe-distance))
        weapon-area (circle self range)
        target-zone (intersection weapon-area friend-safe-zone self-safe-zone)]
    (target-zone target)))
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Game of Life
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Conway's Game of Life

Any live cell with fewer than two live neighbours dies, as if caused by under-
population

Any live cell with two or three live neighbours lives on to the next generation

Any live cell with more than three live neighbours dies, as if by overcrowding

Any dead cell with exactly three live neighbours becomes a live cell, as if by 
reproduction
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1 1 1

2 2

3 3

2 2

1 1 1

1

2

1
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Basic Algorithm

28

Count the number of live cells neighboring each cell

Apply rules to compute next generation
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Representing the Data

29

X

Y
(0,0)

Each live cell represented
In Clojure by a vector

[x, y]
[10,2]

[10,2]

All live cells are sequence
 of vectors

[[2 1] [2 2] [2 3]]
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Neighbors of a Cell

30

[5 5][4 5] [6 5]

[5 4]

[5 6]

[4 4] [6 4]

[4 6] [6 6]

[x y]

[x±1 y±1] without [x y]
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General Rule

31

Write function to process one element

Use higher order function (map, filter, ...) to process collection of element

Thursday, September 17, 15



Finding all the neighbors of a point

32

(defn neighbors
  "Determines all the neighbors of a given coordinate"
  [[x y]]
  (for [dx [-1 0 1] 
         dy [-1 0 1] 
         :when (not= 0 dx dy)]
    [(+ dx x) (+ dy y)]))

(neighbors [1 1]) ([0 0] [0 1] [0 2] [1 0] [1 2] [2 0] [2 1] [2 2])

([-1 -1] [-1 0] [-1 1] [0 -1] [0 1] [1 -1] [1 0] [1 1])(neighbors [0 0])
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Source http://programmablelife.blogspot.com/2012/08/conways-game-of-life-in-clojure.html



33

[[2 1] [2 2] [2 3]]

(map neighbors [[2 1] [2 2] [2 3]]) (([1 0] [1 1] [1 2] [2 0] [2 2] [3 0] [3 1] [3 2]) 
([1 1] [1 2] [1 3] [2 1] [2 3] [3 1] [3 2] [3 3]) 
([1 2] [1 3] [1 4] [2 2] [2 4] [3 2] [3 3] [3 4]))

But neighbors returns sequence for each element

(mapcat neighbors [[2 1] [2 2] [2 3]]) ([1 0] [1 1] [1 2] [2 0] [2 2] [3 0] [3 1] [3 2] 
[1 1] [1 2] [1 3] [2 1] [2 3] [3 1] [3 2] [3 3] 
[1 2] [1 3] [1 4] [2 2] [2 4] [3 2] [3 3] [3 4])
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Need to count each time cell is in the list

34

(frequencies [2 1 1 2 3 2]) {2 3, 1 2, 3 1}

{[2 1] 1, [3 2] 3, [1 0] 1, [2 2] 2, [3 3] 2, 
[1 1] 2, [2 3] 1, [3 4] 1, [1 2] 3, [2 4] 1, 
[1 3] 2, [1 4] 1, [3 0] 1, [3 1] 2, [2 0] 1}

(frequencies (mapcat neighbors [[2 1] [2 2] [2 3]]))

(->> [[2 1] [2 2] [2 3]]
     (mapcat neighbors)
     frequencies)

(let [neighbor-cells (mapcat neighbors [[2 1] [2 2] [2 3]])]
  (frequencies neighbor-cells))
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Store live cells in a set
Insure no duplicates
Can use as function

(defn survive? 
  [neighbor-count]
  (#{3 2} neighbor-count))

(defn birth? 
  [neighbor-count]
  (#{3} neighbor-count))

(defn should-be-live? 
  [live-cells-set cell neighbor-count]
  (if (live-cells-set cell)
    (survive? neighbor-count)
    (birth? neighbor-count)))
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36

(defn next-generation
  [live-cells-set]
  (let [cell-counts (frequencies (mapcat neighbors live-cells-set))
        next-generation (for [[cell neighbor-count] cell-counts
                          :when (should-be-live? live-cells-set cell neighbor-count)]
                          cell)]
    (set next-generation)))

(next-generation (set [[2 1] [2 2] [2 3]])) #{[3 2] [2 2] [1 2]}

(-> #{[2 1] [2 2] [2 3]}
    next-generation
    next-generation)

#{[2 1] [2 2] [2 3]}
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Some Fun

37

(def all-moves (iterate next-generation #{[2 1] [2 2] [2 3]}))

(defn next-move 
  []
  (let [next (first all-moves)]
    (alter-var-root (var all-moves) rest)
    next))

(next-move)      #{[2 1] [2 2] [2 3]}
(next-move)      #{[3 2] [2 2] [1 2]}
(next-move)      #{[2 1] [2 2] [2 3]}
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But that is not the version of the game found on-line
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Stepper

39

(defn stepper
  [neighbors birth? survive?]
  (fn [cells]
    (set (for [[loc n] (frequencies (mapcat neighbors cells))
               :when (if (cells loc) 

(survive? n) 
(birth? n))]

           loc))))

Input 
neighbors - function that computes neighbors of cells
birth? - function that determines if cell should be filled
survive? -function that determines if cell should remain filled

Output 
function that produces next generation
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(defn stepper
  [neighbors birth? survive?]
  (fn [cells]
    (set (for [[loc n] (frequencies (mapcat neighbors cells))
               :when (if (cells loc) 

(survive? n) 
(birth? n))]

           loc))))

(def conway-stepper (stepper neighbors #{3} #{2 3}))

Selects existing live cell if 2 or 3 neighbors are live

Select dead cell if 3 neighbors are live
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Cheap IO

41

(defn create-world
  "Creates rectangular world with the specified width and height.
  Optionally takes coordinates of living cells."
  [w h & living-cells]
  (vec (for [y (range w)]
         (vec (for [x (range h)]
                (if (contains? (first living-cells) [y x]) "X" " "))))))

(create-world 4 4)

[[" " " " " " " "] 
[" " " " " " " "] 
[" " " " " " " "] 
[" " " " " " " "]]

(create-world 4 4 #{[0 0] [1 1] [2 2]})

[["X" " " " " " "] 
[" " "X" " " " "] 
[" " " " "X" " "] 
[" " " " " " " "]]
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Running the Game

42

(defn conway
  "Generates world of given size with initial pattern in specified generation"
  [[w h] pattern iterations]
   (->> (iterate conway-stepper pattern)
        (drop iterations)
        first
        (create-world w h)
        (map println)))
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Example

43

([                             ]
[X   X                        ]
[  X X                        ]
[  X                          ]
[                             ]
nil nil nil nil nil)

(conway [5 15] glider 1)

([  X                          ]
[    X                        ]
[X X X                        ]
[                             ]
[                             ]
nil nil nil nil nil)

(conway [5 15] glider 0)

Thursday, September 17, 15



44

BST
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Binary Search Tree

45

10

5

1 8

20

15 30

Data structure books only show keys at each node

But each node has a key and a value
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Representing a Tree

46

10

5 20[10 [5 nil nil] [20 nil nil]]

{:key 10, :left {:key 5 }, :right {:key 20}}

[[5 nil nil] 10 [20 nil nil]]

{:key 10 :value foo
:left {:key 5  :value bar} 
:right {:key 20 :value foo-bar}}

We will see other ways to represent a tree
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Representing Tree

47

10

5

1 8

20

15 30

(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

[key left right]

Thursday, September 17, 15



Hiding the Structure of Node

48

(defn left-child
 [node]
 (node 1))

(defn right-child
 [node]
 (node 2))

(defn value 
 [node]
 (node 0))
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Navigating the Tree

49

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

10

5

1 8

20

(right-child (left-child large-tree))

(-> large-tree
    left-child
    right-child)
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Standard Search

50

(defn find-key
 [tree k]
 (let [left (left-child tree)
      right (right-child tree)
      value (value tree)]
  (cond
   (= k value) k
   (and left (< k value))  (find-key left k)
   (and right (> k value)) (find-key right k)
   :default nil)))

This is where you really want a key & value at each node of the tree
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Inserting

51

10

5

1 8

20

10

5

1 8

20

15

Add 15

But we have persistence & immutability
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Inserting

52

10

5

1 8

20

10

5

1 8

20

Add 15

10

20

15
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Inserting - Three Ways

53

Build the tree as you traverse the tree

Find path to node and use assoc-in

Use a zipper
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Build Tree as Traverse

54

Tree node {:left left-child :value value :right right-child}

(defn make-tree 
  [lelft value right]
  {:left left :val value :right right})

(defn insert [tree value]
  (if-let [member (:value tree)]
    (cond
       (< value member) (make-tree (insert (:left tree) value) member (:right tree))
       (> value member) (make-tree (:left tree) member (insert (:right tree) value))
       :else tree)
    (make-tree nil value nil)))
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From https://github.com/leonardoborges/purely-functional-data-structures/blob/master/src/
purely_functional_data_structures/ch2.clj



assoc-in

55

Associates a value in a nested structure

(def users [{:name "James" :age 26}  {:name "John" :age 43}])

(assoc-in users [1 :age] 44)

[{:name "James", :age 26} {:name "John", :age 44}]

(assoc-in users [1 :password] "nhoJ")

[{:name "James", :age 26} {:password "nhoJ", :name 
"John", :age 43}]
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(defn position-of 
   "Return path to k in tree"
 [tree k]
 (let [left (left-child tree)
      right (right-child tree)
      value (value tree)]
  (cond 
   (= k value)                 nil
   (and left (< k value))  (cons 1 (position-of left k))
   (< k value)                  [1]
   (and right (> k value)) (cons 2 (position-of right k))
   (> k value)                   [2])))

(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

(position-of tree 5) (1)

(position-of tree 1) (1 1)

(position-of tree 8) (1 2)

(position-of tree 20) (2)

(position-of tree 15) (2 1)

(position-of tree -1) (1 1 1)

(position-of tree 10) nil
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Insert

57

(defn bst-insert
 [tree value]
 (assoc-in tree (position-of tree value) [value nil nil]))

(def small-tree [10 nil nil])

(bst-insert small-tree 5) [10 [5 nil nil] nil]

(-> small-tree
    (bst-insert 5)
    (bst-insert 20)
    (bst-insert 1)) [10 [5 [1 nil nil] nil] [20 nil nil]]
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Zippers

58

Allow you to navigate & change structures

seq-zip
vector-zip
xml-zip

Keeps pointer to current location in structure

Moving
up, down, left, right, next, prev, leftmost, rightmost

Accessing structure
node, root

Editing
remove, replace, edit, insert-child
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Zipper Examples

59

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(-> large-tree
    zip/vector-zip
    zip/node) [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/node)

10

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/node)

[5 [1 nil nil] [8 nil nil]]

Thursday, September 17, 15



Zipper Examples

60

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/right
    zip/node)

[20 nil nil]

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/down
    zip/node)

5
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Zipper Examples

61

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right)

[[5 [1 nil nil] [8 nil nil]] {:l [10], :pnodes [[10 [5 [1 nil nil] 
[8 nil nil]] [20 nil nil]]], :ppath nil, :r ([20 nil nil])}]
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Zipper Examples

62

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    zip/right
    zip/right
    (zip/replace [50 nil nil])
    zip/root)

[10 [5 [1 nil nil] [8 nil nil]] [50 nil nil]]
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Zipper Examples

63

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
  (:require [clojure.zip :as zip] ))

(-> large-tree
    zip/vector-zip
    zip/down
    (zip/replace 11)
    zip/root)

[11 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]
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BST Insert with Zipper

64

[key left right] Tree representation

(defn zipper->left-child
  [zipper]
  (-> zipper zip/down zip/right))

(defn zipper->right-child
  [zipper]
  (-> zipper zip/down zip/rightmost))

(defn zipper->value
  [zipper]
  (if (zip/node zipper)
    (-> zipper zip/down zip/node)
    nil))

Accessing 
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Replacing/Testing

65

(defn replace-node
  [zipper replacement]
  (let [location (zip/node zipper)
        node (zip/make-node zipper location [replacement nil nil])]
    (-> zipper (zip/replace node) zip/root)))

(defn tree-empty?
  [zipper]
  (not (zip/node zipper)))
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The Insert

66

(defn bst-zipper-insert
  [zipper x]
  (let [value (zipper->value zipper)]
    (cond
      (tree-empty? zipper) (replace-node zipper x)
      (= x value) (zip/root zipper)
      (< x value) (recur (zipper->left-child zipper) x)
      (> x value) (recur (zipper->right-child zipper) x))))

(defn bst-insert
  [tree x]
  (bst-zipper-insert (zip/vector-zip tree) x))
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BST as Maps & Zippers

67

Zippers are defined for 
XML
vectors
seq

What about other structures?

{:left {:value 5 :left nil :right nil} :value 10 :right {:value 15 :left nil :right nil}}

Can define zippers on other types
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Making New Zippers

68

(zipper branch? children make-node root)

branch?
One argument - node
Returns true if node can have children

children
One argument - node
Returns sequence of the node's children

make-node
Two arguments - Existing node, seq of children
Returns new node from the children

Root
Root of the structure
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Zipper for BST as a map

69

{:left {:value 5 :left nil :right nil} :value 10 :right nil}

branch?
map?

children
(defn tree->children
  [map]
  [(:value map) (:left map) (:right map)])

make-node
(defn children->tree
  [_ sequence]
  {:value (first sequence)
   :left (second sequence)
   :right (last sequence)})

Order has to match that in
tree->children
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Using the Zipper

70

(def map-tree {:left {:value 5 :left nil :right nil} :value 10 :right {:value 15 :left nil :right nil}})

10

5 15

(def map-zipper (zip/zipper map? tree->children children->tree map-tree))

(-> map-zipper
    zip/down
    zip/right
    zip/node) {:value 5, :left nil, :right nil}
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Doing insert in BST as map
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(defn bst-map-insert
  [tree x]
  (bst-zipper-insert 
     (zip/zipper map? tree->children children->tree tree)
     x))
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Notice the repeat
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(zip/zipper map? tree->children children->tree tree)

Once we figure out the needed functions would like to forget about it

(defn bst-map-zipper
    [tree-map]

(zip/zipper map? tree->children children->tree tree-map) 
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Shorter Way - partial
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(defn bst-map-zipper  (partial zip/zipper map? tree->children children->tree) 

(partial f arg1 arg2 … argk)

f - function with n > k arguments
arg1 arg2 … argk - first k arguments of f
Return function that needs n - k arguments
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Examples
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(reduce + (take-while (partial > 1000) (iterate inc 0)))

(def hundred-times (partial * 100))
(hundred-times 5)

(hundred-times 5 4)

500

2000

499500

(def to-english (partial clojure.pprint/cl-format nil "~@(~@[~R~]~^ ~A.~)"))

(to-english 123456)

"One hundred twenty-three thousand, four hundred fifty-six"
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Currying
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Currying
Multi-argument function -> chain of single-argument functions

adder(a, b c) {a + b + c;}

addA = adder.curry();
addB = addA(2);
addC = addB(3);
answer = addC(4);
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