
CS 696 Functional Programming and Design
Fall Semester, 2015

Doc 7 Destructuring, Battle Ship, Life, BST
Sep 15, 2015

Modified Sept 17

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, September 17, 15

Destructuring - Positional

2

(let [[a b c] (range 5)]
 (println "a b c are: " a b c))

a b c are: 0 1 2

(let [[a b c :as all] [1 2 3 4 5]]
 (println "a b c are:" a b c)
 (println "all is:" all))

a b c are: 1 2 3
all is: [1 2 3 4 5]

(let [[a b c & more :as all] (range 5)]
 (println "a b c are:" a b c)
 (println "more is:" more))

(let [[a b c & more :as all] (range 5)]
 (println "a b c are:" a b c)
 (println "more is:" more)
 (println "all is:" all))

a b c are: 0 1 2
more is: (3 4)

a b c are: 0 1 2
more is: (3 4)
all is: (0 1 2 3 4)

Thursday, September 17, 15

Destructuring - Positional

3

(defn destructuring
 [[a b c & more :as all] z]
 (println "a b c are:" a b c)
 (println "more is:" more)
 (println "all is:" all)
 (println "z is:" z))

(destructuring [1 2 3 4 5] "cat")

a b c are: 1 2 3
more is: (4 5)
all is: [1 2 3 4 5]
z is: cat

Thursday, September 17, 15

Associative Destructuring

4

(let [{first 0, third 2, last 4} [1 2 3 4 5]]
 [first third last])

[1 3 5]

Index

Thursday, September 17, 15

Destructuring - Maps

5

(def guys-name-map {:first-name "Guy" :middle-name "Lewis"
 :last-name "Steele"})

(let [{l-name :last-name, f-name :first-name} guys-name-map]
 (str f-name " " l-name))

(let [{:keys [last-name first-name]} guys-name-map]
 (str first-name " " last-name))

Thursday, September 17, 15

Destructuring - :keys, :strs, :syms

6

[{:keys [a b c]} map]

[{:strs [a b c]} map]

[{:syms [a b c]} map]

a, b, c get values at keys :a :b :c in map

a, b, c get values at keys "a" "b" "c" in map

a, b, c get values at keys 'a 'b 'c in map

Thursday, September 17, 15

Destructuring :as - The Entire map

7

(def guys-name-map {:first-name "Guy" :middle-name "Lewis"
 :last-name "Steele"})

(let [{l-name :last-name, f-name :first-name :as whole-name} guys-name-map]
 (println f-name " " l-name)
 whole-name)

;; Guy Steele
;;{:first-name "Guy", :middle-name "Lewis", :last-name "Steele"}

Thursday, September 17, 15

Destructuring :or - Default Values

8

(def guys-name-map {:first-name "Guy" :middle-name "Lewis"
 :last-name "Steele"})

(let [{l-name :last-name, title :title,
 :or {title "Mr."} guys-name-map]
 (str title " " f-name " " l-name))

Thursday, September 17, 15

9

Battleship Example

Thursday, September 17, 15

The Problem

10

Context - Writing a battleship game

Need a function that determines
Is an enemy ship within range of our ships weapon
But weapon has a blast area so cannot use weapon if

Enemy ship is to close to us or other friendly ships

Thursday, September 17, 15

First Pass

11

range

)LJXUH ���� 7KH SRLQWV LQ UDQJH RI D VKLS ORFDWHG DW WKH RULJLQ

Assume we are at origin
Given a point & range
Is point within range

Point - [x y]

(defn in-range-1
 [position range]
 (let [pos-x (first position)
 pos-y (last position)
 target-distance (Math/sqrt (+ (* pos-x pos-x) (* pos-y pos-y)))]
 (< target-distance range)))

(in-range-1 [1 1] 1)

(in-range-1 [1 1] 2)

false

true

Thursday, September 17, 15

Second Pass

12

Let our position be any location

(defn in-range-2
 [position own-position range]
 (let [pos-x (first position)
 pos-y (last position)
 own-x (first own-position)
 own-y (last own-position)
 dx (- pos-x own-x)
 dy (- pos-y own-y)
 target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
 (< target-distance range)))

This is a Java program
using Clojure syntax

Thursday, September 17, 15

Second Pass - a

13

Using destructuring

(defn in-range-2a
 [[pos-x pos-y] [own-pos-x own-pos-y] range]
 (let [dx (- own-pos-x pos-x)
 dy (- own-pos-y pos-y)
 target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
 (< target-distance range)))

What do we gain? lose?

Thursday, September 17, 15

Second Pass - b

14

With map

(defn in-range-2b
 [position own-position range]
 (let [[dx dy] (map - position own-position)
 target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
 (< target-distance range)))

What do we gain? lose?

Thursday, September 17, 15

Second Pass - c

15

(defn in-range-2c
 [position own-position range]
 (let [delta (map - position own-position)
 target-distance (Math/sqrt (reduce + (map * delta delta)))]
 (< target-distance range)))

Using map & reduce

What do we gain? lose?

Thursday, September 17, 15

Third Pass

16

minD

range

Friendly

)LJXUH ���� $YRLGLQJ HQJDJLQJ HQHPLHV WRR FORVH WR WKH VKLS

(defn in-range-3
 [safe-distance range own-position position friend-position]
 (let [delta (map - position own-position)
 target-distance (Math/sqrt (reduce + (map * delta delta)))
 friend-delta (map - position friend-position)
 target->friend (Math/sqrt (reduce + (map * friend-delta friend-delta)))]
 (and
 (< safe-distance target->friend)
 (< safe-distance target-distance range))))

Thursday, September 17, 15

Third Pass

17

minD

range

Friendly

)LJXUH ���� $YRLGLQJ HQJDJLQJ HQHPLHV WRR FORVH WR WKH VKLS

(defn distance-between
 [a b]
 (let [delta (map - a b)]
 (Math/sqrt (reduce + (map * delta delta)))))

(defn in-range-3a
 [safe-distance range self target friend]
 (and
 (< safe-distance (distance-between friend target))
 (< safe-distance (distance-between self target) range)))

(def in-torpedo-range (partial in-range-3a 1.5 20))
(def in-cannon-range (partial in-range-3a 3 500))

Thursday, September 17, 15

What is the Abstraction?

18

What are we doing?

Dealing with circles shapes

Union
Intersection
Complement

Is a point in a shape

Thursday, September 17, 15

circle - returns a function

19

(defn circle
 ([radius]
 (circle [0 0] radius))
 ([center radius]
 (fn
 [point]
 (<= (distance-between center point) radius))))

(def small-circle (circle 1))

(small-circle [0.5 0]) true
(small-circle [1 2]) false

Thursday, September 17, 15

outside

20

(defn outside
 [shape]
 (complement shape))

(def small-circle (circle 1))

((outside small-circle) [0.5 0]) false
((outside small-circle) [1 2]) true

Thursday, September 17, 15

union

21

(defn union
 ([shape]
 shape)

 ([shape-a shape-b]
 (fn [point]
 (or (shape-a point) (shape-b point))))

 ([shape-a shape-b & shapes]
 (fn [point]
 (let [all-shapes (conj shapes shape-a shape-b)]
 (reduce #(or %1 (%2 point)) false all-shapes)))))

Thursday, September 17, 15

Higher Level in range

22

(defn in-range-4
 [safe-distance range self target friend]
 (let [self-safe-zone (outside (circle self safe-distance))
 friend-safe-zone (outside (circle friend safe-distance))
 weapon-area (circle self range)
 target-zone (intersection weapon-area friend-safe-zone self-safe-zone)]
 (target-zone target)))

Thursday, September 17, 15

23

Game of Life

Thursday, September 17, 15

24

Conway's Game of Life

Any live cell with fewer than two live neighbours dies, as if caused by under-
population

Any live cell with two or three live neighbours lives on to the next generation

Any live cell with more than three live neighbours dies, as if by overcrowding

Any dead cell with exactly three live neighbours becomes a live cell, as if by
reproduction

Thursday, September 17, 15

25

Thursday, September 17, 15

26

1 1 1

2 2

3 3

2 2

1 1 1

1

2

1

Thursday, September 17, 15

27

Thursday, September 17, 15

Basic Algorithm

28

Count the number of live cells neighboring each cell

Apply rules to compute next generation

Thursday, September 17, 15

Representing the Data

29

X

Y
(0,0)

Each live cell represented
In Clojure by a vector

[x, y]
[10,2]

[10,2]

All live cells are sequence
 of vectors

[[2 1] [2 2] [2 3]]

Thursday, September 17, 15

Neighbors of a Cell

30

[5 5][4 5] [6 5]

[5 4]

[5 6]

[4 4] [6 4]

[4 6] [6 6]

[x y]

[x±1 y±1] without [x y]

Thursday, September 17, 15

General Rule

31

Write function to process one element

Use higher order function (map, filter, ...) to process collection of element

Thursday, September 17, 15

Finding all the neighbors of a point

32

(defn neighbors
 "Determines all the neighbors of a given coordinate"
 [[x y]]
 (for [dx [-1 0 1]
 dy [-1 0 1]
 :when (not= 0 dx dy)]
 [(+ dx x) (+ dy y)]))

(neighbors [1 1]) ([0 0] [0 1] [0 2] [1 0] [1 2] [2 0] [2 1] [2 2])

([-1 -1] [-1 0] [-1 1] [0 -1] [0 1] [1 -1] [1 0] [1 1])(neighbors [0 0])

Thursday, September 17, 15

Source http://programmablelife.blogspot.com/2012/08/conways-game-of-life-in-clojure.html

33

[[2 1] [2 2] [2 3]]

(map neighbors [[2 1] [2 2] [2 3]]) (([1 0] [1 1] [1 2] [2 0] [2 2] [3 0] [3 1] [3 2])
([1 1] [1 2] [1 3] [2 1] [2 3] [3 1] [3 2] [3 3])
([1 2] [1 3] [1 4] [2 2] [2 4] [3 2] [3 3] [3 4]))

But neighbors returns sequence for each element

(mapcat neighbors [[2 1] [2 2] [2 3]]) ([1 0] [1 1] [1 2] [2 0] [2 2] [3 0] [3 1] [3 2]
[1 1] [1 2] [1 3] [2 1] [2 3] [3 1] [3 2] [3 3]
[1 2] [1 3] [1 4] [2 2] [2 4] [3 2] [3 3] [3 4])

Thursday, September 17, 15

Need to count each time cell is in the list

34

(frequencies [2 1 1 2 3 2]) {2 3, 1 2, 3 1}

{[2 1] 1, [3 2] 3, [1 0] 1, [2 2] 2, [3 3] 2,
[1 1] 2, [2 3] 1, [3 4] 1, [1 2] 3, [2 4] 1,
[1 3] 2, [1 4] 1, [3 0] 1, [3 1] 2, [2 0] 1}

(frequencies (mapcat neighbors [[2 1] [2 2] [2 3]]))

(->> [[2 1] [2 2] [2 3]]
 (mapcat neighbors)
 frequencies)

(let [neighbor-cells (mapcat neighbors [[2 1] [2 2] [2 3]])]
 (frequencies neighbor-cells))

Thursday, September 17, 15

35

Store live cells in a set
Insure no duplicates
Can use as function

(defn survive?
 [neighbor-count]
 (#{3 2} neighbor-count))

(defn birth?
 [neighbor-count]
 (#{3} neighbor-count))

(defn should-be-live?
 [live-cells-set cell neighbor-count]
 (if (live-cells-set cell)
 (survive? neighbor-count)
 (birth? neighbor-count)))

Thursday, September 17, 15

36

(defn next-generation
 [live-cells-set]
 (let [cell-counts (frequencies (mapcat neighbors live-cells-set))
 next-generation (for [[cell neighbor-count] cell-counts
 :when (should-be-live? live-cells-set cell neighbor-count)]
 cell)]
 (set next-generation)))

(next-generation (set [[2 1] [2 2] [2 3]])) #{[3 2] [2 2] [1 2]}

(-> #{[2 1] [2 2] [2 3]}
 next-generation
 next-generation)

#{[2 1] [2 2] [2 3]}

Thursday, September 17, 15

Some Fun

37

(def all-moves (iterate next-generation #{[2 1] [2 2] [2 3]}))

(defn next-move
 []
 (let [next (first all-moves)]
 (alter-var-root (var all-moves) rest)
 next))

(next-move) #{[2 1] [2 2] [2 3]}
(next-move) #{[3 2] [2 2] [1 2]}
(next-move) #{[2 1] [2 2] [2 3]}

Thursday, September 17, 15

38

But that is not the version of the game found on-line

Thursday, September 17, 15

Stepper

39

(defn stepper
 [neighbors birth? survive?]
 (fn [cells]
 (set (for [[loc n] (frequencies (mapcat neighbors cells))
 :when (if (cells loc)

(survive? n)
(birth? n))]

 loc))))

Input
neighbors - function that computes neighbors of cells
birth? - function that determines if cell should be filled
survive? -function that determines if cell should remain filled

Output
function that produces next generation

Thursday, September 17, 15

40

(defn stepper
 [neighbors birth? survive?]
 (fn [cells]
 (set (for [[loc n] (frequencies (mapcat neighbors cells))
 :when (if (cells loc)

(survive? n)
(birth? n))]

 loc))))

(def conway-stepper (stepper neighbors #{3} #{2 3}))

Selects existing live cell if 2 or 3 neighbors are live

Select dead cell if 3 neighbors are live

Thursday, September 17, 15

Cheap IO

41

(defn create-world
 "Creates rectangular world with the specified width and height.
 Optionally takes coordinates of living cells."
 [w h & living-cells]
 (vec (for [y (range w)]
 (vec (for [x (range h)]
 (if (contains? (first living-cells) [y x]) "X" " "))))))

(create-world 4 4)

[[" " " " " " " "]
[" " " " " " " "]
[" " " " " " " "]
[" " " " " " " "]]

(create-world 4 4 #{[0 0] [1 1] [2 2]})

[["X" " " " " " "]
[" " "X" " " " "]
[" " " " "X" " "]
[" " " " " " " "]]

Thursday, September 17, 15

Running the Game

42

(defn conway
 "Generates world of given size with initial pattern in specified generation"
 [[w h] pattern iterations]
 (->> (iterate conway-stepper pattern)
 (drop iterations)
 first
 (create-world w h)
 (map println)))

Thursday, September 17, 15

Example

43

([]
[X X]
[X X]
[X]
[]
nil nil nil nil nil)

(conway [5 15] glider 1)

([X]
[X]
[X X X]
[]
[]
nil nil nil nil nil)

(conway [5 15] glider 0)

Thursday, September 17, 15

44

BST

Thursday, September 17, 15

Binary Search Tree

45

10

5

1 8

20

15 30

Data structure books only show keys at each node

But each node has a key and a value

Thursday, September 17, 15

Representing a Tree

46

10

5 20[10 [5 nil nil] [20 nil nil]]

{:key 10, :left {:key 5 }, :right {:key 20}}

[[5 nil nil] 10 [20 nil nil]]

{:key 10 :value foo
:left {:key 5 :value bar}
:right {:key 20 :value foo-bar}}

We will see other ways to represent a tree

Thursday, September 17, 15

Representing Tree

47

10

5

1 8

20

15 30

(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

[key left right]

Thursday, September 17, 15

Hiding the Structure of Node

48

(defn left-child
 [node]
 (node 1))

(defn right-child
 [node]
 (node 2))

(defn value
 [node]
 (node 0))

Thursday, September 17, 15

Navigating the Tree

49

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

10

5

1 8

20

(right-child (left-child large-tree))

(-> large-tree
 left-child
 right-child)

Thursday, September 17, 15

Standard Search

50

(defn find-key
 [tree k]
 (let [left (left-child tree)
 right (right-child tree)
 value (value tree)]
 (cond
 (= k value) k
 (and left (< k value)) (find-key left k)
 (and right (> k value)) (find-key right k)
 :default nil)))

This is where you really want a key & value at each node of the tree

Thursday, September 17, 15

Inserting

51

10

5

1 8

20

10

5

1 8

20

15

Add 15

But we have persistence & immutability

Thursday, September 17, 15

Inserting

52

10

5

1 8

20

10

5

1 8

20

Add 15

10

20

15

Thursday, September 17, 15

Inserting - Three Ways

53

Build the tree as you traverse the tree

Find path to node and use assoc-in

Use a zipper

Thursday, September 17, 15

Build Tree as Traverse

54

Tree node {:left left-child :value value :right right-child}

(defn make-tree
 [lelft value right]
 {:left left :val value :right right})

(defn insert [tree value]
 (if-let [member (:value tree)]
 (cond
 (< value member) (make-tree (insert (:left tree) value) member (:right tree))
 (> value member) (make-tree (:left tree) member (insert (:right tree) value))
 :else tree)
 (make-tree nil value nil)))

Thursday, September 17, 15

From https://github.com/leonardoborges/purely-functional-data-structures/blob/master/src/
purely_functional_data_structures/ch2.clj

assoc-in

55

Associates a value in a nested structure

(def users [{:name "James" :age 26} {:name "John" :age 43}])

(assoc-in users [1 :age] 44)

[{:name "James", :age 26} {:name "John", :age 44}]

(assoc-in users [1 :password] "nhoJ")

[{:name "James", :age 26} {:password "nhoJ", :name
"John", :age 43}]

Thursday, September 17, 15

56

(defn position-of
 "Return path to k in tree"
 [tree k]
 (let [left (left-child tree)
 right (right-child tree)
 value (value tree)]
 (cond
 (= k value) nil
 (and left (< k value)) (cons 1 (position-of left k))
 (< k value) [1]
 (and right (> k value)) (cons 2 (position-of right k))
 (> k value) [2])))

(def tree [10 [5 [1 nil nil] [8 nil nil]] [20 [15 nil nil] [30 nil nil]]])

(position-of tree 5) (1)

(position-of tree 1) (1 1)

(position-of tree 8) (1 2)

(position-of tree 20) (2)

(position-of tree 15) (2 1)

(position-of tree -1) (1 1 1)

(position-of tree 10) nil

Thursday, September 17, 15

Insert

57

(defn bst-insert
 [tree value]
 (assoc-in tree (position-of tree value) [value nil nil]))

(def small-tree [10 nil nil])

(bst-insert small-tree 5) [10 [5 nil nil] nil]

(-> small-tree
 (bst-insert 5)
 (bst-insert 20)
 (bst-insert 1)) [10 [5 [1 nil nil] nil] [20 nil nil]]

Thursday, September 17, 15

Zippers

58

Allow you to navigate & change structures

seq-zip
vector-zip
xml-zip

Keeps pointer to current location in structure

Moving
up, down, left, right, next, prev, leftmost, rightmost

Accessing structure
node, root

Editing
remove, replace, edit, insert-child

Thursday, September 17, 15

Zipper Examples

59

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(-> large-tree
 zip/vector-zip
 zip/node) [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/node)

10

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/node)

[5 [1 nil nil] [8 nil nil]]

Thursday, September 17, 15

Zipper Examples

60

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/right
 zip/node)

[20 nil nil]

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/down
 zip/node)

5

Thursday, September 17, 15

Zipper Examples

61

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right)

[[5 [1 nil nil] [8 nil nil]] {:l [10], :pnodes [[10 [5 [1 nil nil]
[8 nil nil]] [20 nil nil]]], :ppath nil, :r ([20 nil nil])}]

Thursday, September 17, 15

Zipper Examples

62

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 zip/right
 zip/right
 (zip/replace [50 nil nil])
 zip/root)

[10 [5 [1 nil nil] [8 nil nil]] [50 nil nil]]

Thursday, September 17, 15

Zipper Examples

63

10

5

1 8

20

(def large-tree [10 [5 [1 nil nil] [8 nil nil]] [20 nil nil]])

(ns basiclectures.basic-language.zip
 (:require [clojure.zip :as zip]))

(-> large-tree
 zip/vector-zip
 zip/down
 (zip/replace 11)
 zip/root)

[11 [5 [1 nil nil] [8 nil nil]] [20 nil nil]]

Thursday, September 17, 15

BST Insert with Zipper

64

[key left right] Tree representation

(defn zipper->left-child
 [zipper]
 (-> zipper zip/down zip/right))

(defn zipper->right-child
 [zipper]
 (-> zipper zip/down zip/rightmost))

(defn zipper->value
 [zipper]
 (if (zip/node zipper)
 (-> zipper zip/down zip/node)
 nil))

Accessing

Thursday, September 17, 15

Replacing/Testing

65

(defn replace-node
 [zipper replacement]
 (let [location (zip/node zipper)
 node (zip/make-node zipper location [replacement nil nil])]
 (-> zipper (zip/replace node) zip/root)))

(defn tree-empty?
 [zipper]
 (not (zip/node zipper)))

Thursday, September 17, 15

The Insert

66

(defn bst-zipper-insert
 [zipper x]
 (let [value (zipper->value zipper)]
 (cond
 (tree-empty? zipper) (replace-node zipper x)
 (= x value) (zip/root zipper)
 (< x value) (recur (zipper->left-child zipper) x)
 (> x value) (recur (zipper->right-child zipper) x))))

(defn bst-insert
 [tree x]
 (bst-zipper-insert (zip/vector-zip tree) x))

Thursday, September 17, 15

BST as Maps & Zippers

67

Zippers are defined for
XML
vectors
seq

What about other structures?

{:left {:value 5 :left nil :right nil} :value 10 :right {:value 15 :left nil :right nil}}

Can define zippers on other types

Thursday, September 17, 15

Making New Zippers

68

(zipper branch? children make-node root)

branch?
One argument - node
Returns true if node can have children

children
One argument - node
Returns sequence of the node's children

make-node
Two arguments - Existing node, seq of children
Returns new node from the children

Root
Root of the structure

Thursday, September 17, 15

Zipper for BST as a map

69

{:left {:value 5 :left nil :right nil} :value 10 :right nil}

branch?
map?

children
(defn tree->children
 [map]
 [(:value map) (:left map) (:right map)])

make-node
(defn children->tree
 [_ sequence]
 {:value (first sequence)
 :left (second sequence)
 :right (last sequence)})

Order has to match that in
tree->children

Thursday, September 17, 15

Using the Zipper

70

(def map-tree {:left {:value 5 :left nil :right nil} :value 10 :right {:value 15 :left nil :right nil}})

10

5 15

(def map-zipper (zip/zipper map? tree->children children->tree map-tree))

(-> map-zipper
 zip/down
 zip/right
 zip/node) {:value 5, :left nil, :right nil}

Thursday, September 17, 15

Doing insert in BST as map

71

(defn bst-map-insert
 [tree x]
 (bst-zipper-insert
 (zip/zipper map? tree->children children->tree tree)
 x))

Thursday, September 17, 15

Notice the repeat

72

(zip/zipper map? tree->children children->tree tree)

Once we figure out the needed functions would like to forget about it

(defn bst-map-zipper
 [tree-map]

(zip/zipper map? tree->children children->tree tree-map)

Thursday, September 17, 15

Shorter Way - partial

73

(defn bst-map-zipper (partial zip/zipper map? tree->children children->tree)

(partial f arg1 arg2 … argk)

f - function with n > k arguments
arg1 arg2 … argk - first k arguments of f
Return function that needs n - k arguments

Thursday, September 17, 15

Examples

74

(reduce + (take-while (partial > 1000) (iterate inc 0)))

(def hundred-times (partial * 100))
(hundred-times 5)

(hundred-times 5 4)

500

2000

499500

(def to-english (partial clojure.pprint/cl-format nil "~@(~@[~R~]~^ ~A.~)"))

(to-english 123456)

"One hundred twenty-three thousand, four hundred fifty-six"

Thursday, September 17, 15

Currying

75

Currying
Multi-argument function -> chain of single-argument functions

adder(a, b c) {a + b + c;}

addA = adder.curry();
addB = addA(2);
addC = addB(3);
answer = addC(4);

Thursday, September 17, 15

