CS 696 Functional Programming and Design
Fall Semester, 2015
Doc 8 Assignment 1 Comments
Sep 22, 2015

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, September 22, 15

Some Solutions

Tuesday, September 22, 15

Problem 1

(defn bill-total [bill]
(reduce + (for [x bill] (* (:price x) (:quantity x)))))

(defn bill-total [bill]
(reduce + (map (fn [x] (* (:price x) (:quantity x))) bill)))

Tuesday, September 22, 15

Problem 2

(defn combine-maps [args]
(assoc (first args) :quantity (apply + (map :quantity args))))

:; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
(into []
(for [[name rec] (group-by :name (into bill items))](combine-maps rec))))

Tuesday, September 22, 15

(defn combine-maps [maps]
“maps - collection of maps, each map contains :quantity key
- other keys & values the same
Return map with :quantity the sum of all map quantities”

(assoc (first maps) :quantity (apply + (map :quantity maps))))

;; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
(into []
(for [[name rec] (group-by :name (into bill items))]
(combine-maps rec))))

Tuesday, September 22, 15

(defn combine-maps [maps]
“maps - collection of maps, each map contains :quantity key
- other keys & values the same
Return map with :quantity the sum of all quantities”

(let [quantity-sum (apply + (map :quantity maps))]
(assoc (first maps) :quantity quantity-sum)))

;; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
(into []
(for [[name rec] (group-by :name (into bill items))]
(combine-maps rec))))

Tuesday, September 22, 15

(defn combine-maps [maps]
“maps - collection of maps, each map contains :quantity key
- other keys & values the same
Return map with :quantity the sum of all quantities”

(let [quantity-sum (apply + (map :quantity maps))]
(assoc (first maps) :quantity quantity-sum)))

;; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
(for [[name rec] (group-by :name (into bill items))]
(combine-maps rec)))

Tuesday, September 22, 15

(defn combine-maps [maps]
“maps - collection of maps, each map contains :quantity key
- other keys & values the same
Return map with :quantity the sum of all quantities”

(let [quantity-sum (apply + (map :quantity maps))]
(assoc (first maps) :quantity quantity-sum)))

;; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
(let [all-items (into bill items)]
(for [[_ rec] (group-by :name all-items)]
(combine-maps rec)))

Tuesday, September 22, 15

(defn sum-quantities [maps]
“maps - collection of maps, each map contains :quantity key
- other keys & values the same
Return map with :quantity the sum of all quantities”

(let [quantity-sum (apply + (map :quantity maps))]
(assoc (first maps) :quantity quantity-sum)))

;; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
(let [all (into bill items)]
(for [[_ rec] (group-by :name all)]
(sum-quantities rec)))

Tuesday, September 22, 15

(defn make-poly [p]
(fn [n] (reduce + (for [[a b] p] (* a (Math/pow n b))))))

* Problem 4

(defn differentiate [p]
(vec (for [[a b] p
:when (not (zero? b))]

[(* a b) (dec b)])))

* Problem 5

;; Estimates root of a polynomial p using Newton's method with initial
;; guess x and tolerance t.
(defn find-root [t p X]
(let [x1 (- x (/ ((make-poly p) x) ((make-poly (differentiate p)) x)))]
(if (< (Math/abs (- x1 x)) t)
X1
(recur t p x1))))

Tuesday, September 22, 15

Problem 6

(def account (atom 100))

(defn deposit
[a b]
(swap! a + b))

(defn withdraw
[a b]
(if (< @a b) "Insufficient funds."
(swap! a - b)))

Tuesday, September 22, 15

(defn bank_account [balance amount]
"Function to monitor the deposit or withdrawal money from a bank account”
(let [balance (ref balance _amount)
deposit (fn [amount]
(dosync (alter balance (partial + amount))))
withdraw (fn [amount]
(dosync (alter balance #(- % amount))))]
(fn [method _name & args]
(cond
(= method_name :withdraw_money) (withdraw (first args))
(= method _name :deposit_ money) (deposit (first args))

)
)
)
)

(def account (bank_account 10000))
(account :withdraw_money 400)
(account :deposit_money 100)

Tuesday, September 22, 15

Some Issues

Tuesday, September 22, 15

(defn bill-total [list-item]
;;here bill-amount will store the result
(loop [counter (count list-item)
i 0
bill-amount 0.0]
(if (<= counter 0)
bill-amount
;;here, bill-amount will have result of mulitplication between price and qunatity
(recur (dec counter) (inc i) (+ bill-amount (* (get (get bill i) :price) (get (get bill i) :quantity))))

)

Tuesday, September 22, 15

(defn bill-total [list-item]
;;here bill-amount will store the result
(loop [counter (count list-item)
i 0
bill-amount 0.0]
(if (<= counter 0)
bill-amount
(recur
(dec counter)
(inc i)
(+ bill-amount (* (:price (get bill i)) (:quantity (get bill i))))))))

What is bill?

Tuesday, September 22, 15

(defn calcx [egn eqgn' X]
(- x (/ (eqn x) (eqn’ x))))
(defn find-root [tolerance eqn guess]
(let [px (make-poly egn) px' (make-poly (differentiate egn))]
(let [x1 (calcx px px' guess)]
(if (<= (Math/abs (- guess x1)) tolerance)
(format "%.6f" guess)
(find-root tolerance egn x1)))))

Tuesday, September 22, 15

(defn calcx [egn eqgn' X]
(- x (/ (eqn x) (eqn’ x))))

(defn find-root [tolerance eqn guess]
(let [px (make-poly eqn)
pXx' (make-poly (differentiate eqn))
x1 (calcx px px' guess)]
(if (<= (Math/abs (- guess x1)) tolerance)
(format "%.6f" guess) ;;don’t return a string
(find-root tolerance egn x1)))))

Tuesday, September 22, 15

(defn make-poly[x](fn polynomial[y] (+ (* (first(first x)) (exp y (second(first x)))) (* (first(secon
X)) (exp y (second(second x)))) (* (first(nth x 2)) (exp y (second(nth x 2)))))))

(defn make-poly
[X]
(fn polynomial [y]
(+ (* (first(first x)) (exp y (second(first x))))
(* (first(second x)) (exp y (second(second x))))
(* (first(nth x 2)) (exp y (second(nth x 2)))))))

Tuesday, September 22, 15

;; Wrong name -1
(defn polynomial [poly]
(fn [X](double(reduce + (map #(* (nth % 0)(reduce * (repeat (nth % 1) x)))poly)))))

Tuesday, September 22, 15

(defn find-root [epsilon list guess]
(let [result-x (- guess(/(/((poly-maker list)guess)((poly-maker(differentiate list))guess)) 1.0))])

(if (<=(abs(- result-x guess))epsilon)
result-x

(find-root epsilon list result-x)

)

20

Tuesday, September 22, 15

(declare item-bill) ;;; added so could run code -1

(defn bill-total
[bill]
(if (> (count bill) 1)
(+ (item-bill (peek bill)) (bill-total (pop bill)))
(item-bill (peek bill))))

(defn item-bill
[item]
(* (get item :price) (get item :quantity)))

(bill-total bill)

21

Tuesday, September 22, 15

(defn add-to-bill [bill items] (let [
new-bill1 (new-item bill items)
new-bill2 (merge-item bill items)

]

(new-bill new-bill1 new-bill2)

)

(defn add-to-bill
[bill items]
(let [new-bill1 (new-item bill items)
new-bill2 (merge-item bill items)]
(new-bill new-bill1 new-bill2)))

22

Tuesday, September 22, 15

(defn find-root[small-limit poly x0]
(
let [;Px stores the value of the evaluated polynomial
Px (calculate-poly poly x0)
;P-x stores the value of the derivative of the polynomial evaluated with X0 value
P-x (calculate-poly (differentiate poly) x0)

]

(let [x (into[](take 10 (iterate #(calculate-xn poly %)x0)))

;X-range (range(count x))
:X0-x1
root-guess-1 (- (x 0)(x 1))
; X2-X1
root-guess-2 (- (x 1)(x 2))
; X3-X2
root-guess-3 (- (x 3)(x 4))
: X4-x3
root-guess-4 (- (x 4)(x 5))
: X5-x4
root-guess-5 (- (X 5)(x 6))
]

(x 4)

)
)

) 23

Tuesday, September 22, 15

(defn make-poly2 [poly X]
(loop [i O tot O]
(if(< i (count poly))
(recur (inc i) (+ tot (* (get (get poly i) 0) (Math/pow x (get (get poly i) 1)))))

tot

24

Tuesday, September 22, 15

(defn make-poly2 [poly X]
(loop [i O
tot O]
(if (< i (count poly))
(recur
(inc i)
(+ tot (* (get (get poly i) 0) (Math/pow x (get (get poly i) 1)))))
tot
)
)

25

Tuesday, September 22, 15

Unit Tests

26

Tuesday, September 22, 15

(deftest test-problem1

(testing "Problem 1"

(are [Dbill total]
(= (int (bill-total bill)) (int total))

{:name "a" :price 1 :quantity 1}] 1
{:name "a" :price 10 :quantity 2.0}] 20.0
{:name "a" :price 10 :quantity 0}] O
{:name "a" :price 2 :quantity 1}

{tname "a" :price 3 :quantity 2}] 8)))

27

Tuesday, September 22, 15

Used in Testing Problem 2

(defn vec->bill
"Used to condense bill map size"
[[name quantity]]
{:name name :price 1 :quantity quantity})

(defn inflate-bill
[bill-vec]
(mapv vec->bill bill-vec))

(inflate-bill [["a" 1]])

=> [{:name "a", :price 1, :quantity 1}]

(inflate-bill [["a" 2] ["b" 5]])

=> [{:name "a", :price 1, :quantity 2} {:name "b", :price 1, :quantity 5}]

28

Tuesday, September 22, 15

(deftest test-problem2
(testing "Problem 2"
(are [bill add result]
(let [[bill-maps add-maps result-maps] (mapv inflate-bill [bill add result])
computed (add-to-bill bill-maps add-maps)
correct? (and
(= (count computed) (count result-maps))
(= (set computed) (set result-maps)))]
(when-not correct?
(printin "computed: " computed)
(println "correct answer: " result-maps))
true)
["a" 1]] [["0"1]] [["a" 1] ["b" 1]]
["a" 1]] [["a" 2] Z" a" 3]
["a" 1Z "™ 1]] [["a" 1] ["b" 1]]
["a" 1]] [l [[" a" 1]

] 'a" 17 [a" 1]
"a" 11" 2] [[a"2]['c"2]] [["a" 3]["b" 2] ['c" 2]]

"a" 1]["0" 2] [["a" 2]["0" 2]] [["a" 3]["b" 41])))

- =

r—

—

29

Tuesday, September 22, 15

(deftest test-problem3
(are [func-vec x Y]
(= (int ((make-poly func-vec) x)) y)

11122
[21]124
[21][3 0]
[32][-3 O]
[3 2] [-2 1]
[3 2] [-2 1]

15
129

50]] 16
50]] 2 13

[32][-21
100
)

5 0]] 3 26

30

Tuesday, September 22, 15

(deftest test-problem4
(are [func-vec derivative]
(= (differentiate func-vec) derivative)

[1 1111 0]
[2 2]] [[4 1]
[2 3]][[6 2]
[2 20]] [[40 19]]

[33][22][11][50]][[°2][41][101)

31

Tuesday, September 22, 15

(defn test-abs

[n]

(maxn (- n)))

(defn near

(X y]

(near (float x) y 0.1))

([x y delta]

(let [diff (- x y)]
(< (test-abs diff) delta))))

(deftest test-problem5
(are [delta func-vec start root]
(near (find-root delta func-vec start) root)

0.0001
0.0001
0.0001
0.0001
0.0001

[12]
[12]
[6 2]
[12]

[1 3]

-1 0]] 10 1

-1 0]] -10 -1

11][-10]
-4 1][4 0]

-12][-8 1]

10 0.3333
10 2
[12.0]] -4 -3))

32

Tuesday, September 22, 15

33

Tuesday, September 22, 15

Use spaces, no tabs

;; good
(when something
(something-else))

(with-out-str
(printin "Hello, ")
(printin "world!"))

;; bad - four spaces
(when something
(something-else))

;; bad - one space
(with-out-str
(printin "Hello, ")
(printin "world!"))

34

Tuesday, September 22, 15

Vertically align function (macro) arguments spanning multiple lines

» good
(filter even?
(range 1 10))

. bad

(filter even?
(range 1 10))

35

Tuesday, September 22, 15

Use a single space indentation for function (macro) arguments when there are
no arguments on the same line as the function name

; good

(filter

even?
(range 1 10))

(or

ala

bala
portokala)

;; bad - two-space indent
(filter

even?

(range 1 10))

(or
ala
bala
portokala)

36

Tuesday, September 22, 15

Vertically align let bindings and map keywords

;; good
(let [thing1 "some stuff"
thing2 "other stuff"]
{:thing1 thing1
:thing2 thing2})

;; bad

(let [thing1 "some stuff"
thing2 "other stuff"]
{:thing1 thing1
:thing2 thing2})

37

Tuesday, September 22, 15

Optionally omit the new line between the function name and argument vector
for defn when there is no docstring

;; good
(defn foo

[X]
(bar x))

;; good
(defn foo [X]
(bar x))

. bad

(defn foo
[x] (bar x))

38

Tuesday, September 22, 15

;; good
(defn foo [X]
(bar x))

Optionally omit the new line between the
argument vector and a short function body

;; good for a small function body
(defn foo [x] (bar x))

;; good for multi-arity functions
(defn foo
([x] (bar x))
([xy]
(if (predicate? x)
(bar x)
(baz x))))

;» bad
(defn foo
[X] (if (predicate? x)
(bar x)
(baz x)))

39

Tuesday, September 22, 15

Indent each line of multi-line docstrings

;; good
(defn foo
"Hello there. This is
a multi-line docstring."

[
(bar))

;; bad
(defn foo

"Hello there. This is
a multi-line docstring."

[
(bar))

40

Tuesday, September 22, 15

;; good
(foo (bar baz) quux)

;; bad
(foo(bar baz)quux)
(foo (bar baz) quux)

If any text precedes an opening bracket((, { and [)
or follows a closing bracket(), } and]), separate that
text from that bracket with a space. Conversely,
leave no space after an opening bracket and before
following text, or after preceding text and before a

closing bracket

41

Tuesday, September 22, 15

Don't use commas between the elements of sequential collection literals

;; good
12 3]
(12 3)

. bad

[1, 2, 3]
(1, 2, 3)

42

Tuesday, September 22, 15

Use empty lines between top-level forms
;; good

(def x ...)

(defn foo ...)

;; bad

(def x ...)
(defn foo ...)

43

Tuesday, September 22, 15

An exception to the rule is the grouping of related defs together

;; good

(def min-rows 10)
(def max-rows 20)
(def min-cols 15)
(def max-cols 30)

44

Tuesday, September 22, 15

Avoid functions longer than 10 LOC (lines of code).
|deally, most functions will be shorter than 5 LOC

Avoid parameter lists with more than three or four positional parameters

Avoid forward references

45

Tuesday, September 22, 15

Don't define vars inside functions

;; very bad
(defn foo []
(def x 5)

)

46

Tuesday, September 22, 15

Prefer vec over into when you need to convert a sequence into a vector

;; good
(vec some-seq)

;; bad
(into [] some-seq)

47

Tuesday, September 22, 15

Use when instead of (if ... (do ...)

;; good

(when pred
(foo)
(bar))

;; bad
(if pred
(do
(foo)

(bar)))

48

Tuesday, September 22, 15

Use when-not instead of (when (not ...) ...)

;; good
(when-not pred
(foo)
(bar))

;; bad

(when (not pred)
(foo)
(bar))

49

Tuesday, September 22, 15

Use not= instead of (not (= ...))

;; good
(not= foo bar)

;; bad
(not (= foo bar))

50

Tuesday, September 22, 15

Use lisp-case for function and variable names

;; good
(def some-var ...)
(defn some-fun ...)

;; bad

(def someVar ...)
(defn somefun ...)
(def some_fun ...)

51

Tuesday, September 22, 15

The names of predicate methods (methods that return a boolean
value) should end in a question mark

» good
(defn palindrome? ...)

;; bad
(defn palindrome-p ...) ; Common Lisp style
(defn is-palindrome ...) ; Java style

52

Tuesday, September 22, 15

Use -> instead of to in the names of conversion functions

;; good
(defn f->c ...)
;; not so good

(defn f-to-c ...)

53

Tuesday, September 22, 15

Follow clojure.core's example for idiomatic names like pred and coll

f, g, h - function input

n - integer input usually a size
Index, I - integer index

X, Y - numbers

XS - sequence

m - map

S - string input

re - regular expression
coll - a collection

pred - a predicate closure
& more - variadic input

xf - xform, a transducer

54

Tuesday, September 22, 15

