
CS 696 Functional Programming and Design
Fall Semester, 2015

Doc 8 Assignment 1 Comments
Sep 22, 2015

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, September 22, 15

2

Some Solutions

Tuesday, September 22, 15

Problem 1

3

(defn bill-total [bill]
 (reduce + (for [x bill] (* (:price x) (:quantity x)))))

(defn bill-total [bill]
 (reduce + (map (fn [x] (* (:price x) (:quantity x))) bill)))

Tuesday, September 22, 15

Problem 2

4

(defn combine-maps [args]
 (assoc (first args) :quantity (apply + (map :quantity args))))

;; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
 (into []
 (for [[name rec] (group-by :name (into bill items))](combine-maps rec))))

Tuesday, September 22, 15

5

(defn combine-maps [maps]
 “maps - collection of maps, each map contains :quantity key
 - other keys & values the same
 Return map with :quantity the sum of all map quantities”

 (assoc (first maps) :quantity (apply + (map :quantity maps))))

;; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
 (into []
 (for [[name rec] (group-by :name (into bill items))]
 (combine-maps rec))))

Tuesday, September 22, 15

6

(defn combine-maps [maps]
 “maps - collection of maps, each map contains :quantity key
 - other keys & values the same
 Return map with :quantity the sum of all quantities”

 (let [quantity-sum (apply + (map :quantity maps))]

 (assoc (first maps) :quantity quantity-sum)))

;; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
 (into []
 (for [[name rec] (group-by :name (into bill items))]
 (combine-maps rec))))

Tuesday, September 22, 15

7

(defn combine-maps [maps]
 “maps - collection of maps, each map contains :quantity key
 - other keys & values the same
 Return map with :quantity the sum of all quantities”

 (let [quantity-sum (apply + (map :quantity maps))]

 (assoc (first maps) :quantity quantity-sum)))

;; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
 (for [[name rec] (group-by :name (into bill items))]
 (combine-maps rec)))

Tuesday, September 22, 15

8

(defn combine-maps [maps]
 “maps - collection of maps, each map contains :quantity key
 - other keys & values the same
 Return map with :quantity the sum of all quantities”

 (let [quantity-sum (apply + (map :quantity maps))]

 (assoc (first maps) :quantity quantity-sum)))

;; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
 (let [all-items (into bill items)]
 (for [[_ rec] (group-by :name all-items)]
 (combine-maps rec)))

Tuesday, September 22, 15

9

(defn sum-quantities [maps]
 “maps - collection of maps, each map contains :quantity key
 - other keys & values the same
 Return map with :quantity the sum of all quantities”

 (let [quantity-sum (apply + (map :quantity maps))]

 (assoc (first maps) :quantity quantity-sum)))

;; Combines two bills and consolidates duplicate items.
(defn add-to-bill [bill items]
 (let [all (into bill items)]
 (for [[_ rec] (group-by :name all)]
 (sum-quantities rec)))

Tuesday, September 22, 15

10

(defn make-poly [p]
 (fn [n] (reduce + (for [[a b] p] (* a (Math/pow n b))))))

;; Problem 4

(defn differentiate [p]
 (vec (for [[a b] p
 :when (not (zero? b))]
 [(* a b) (dec b)])))

;; Problem 5

;; Estimates root of a polynomial p using Newton's method with initial
;; guess x and tolerance t.
(defn find-root [t p x]
 (let [x1 (- x (/ ((make-poly p) x) ((make-poly (differentiate p)) x)))]
 (if (< (Math/abs (- x1 x)) t)

x1
(recur t p x1))))

Tuesday, September 22, 15

Problem 6

11

(def account (atom 100))

(defn deposit
 [a b]
 (swap! a + b))

(defn withdraw
 [a b]
 (if (< @a b) "Insufficient funds."
 (swap! a - b)))

Tuesday, September 22, 15

12

(defn bank_account [balance_amount]
 "Function to monitor the deposit or withdrawal money from a bank account"
 (let [balance (ref balance_amount)
 deposit (fn [amount]
 (dosync (alter balance (partial + amount))))
 withdraw (fn [amount]
 (dosync (alter balance #(- % amount))))]
 (fn [method_name & args]
 (cond
 (= method_name :withdraw_money) (withdraw (first args))
 (= method_name :deposit_money) (deposit (first args))
)
)
)
)

(def account (bank_account 10000))
(account :withdraw_money 400)
(account :deposit_money 100)

Tuesday, September 22, 15

13

Some Issues

Tuesday, September 22, 15

14

(defn bill-total [list-item]
 ;;here bill-amount will store the result
 (loop [counter (count list-item)
 i 0
 bill-amount 0.0]
 (if (<= counter 0)
 bill-amount
 ;;here, bill-amount will have result of mulitplication between price and qunatity
 (recur (dec counter) (inc i) (+ bill-amount (* (get (get bill i) :price) (get (get bill i) :quantity))))
)
)
)

Tuesday, September 22, 15

15

(defn bill-total [list-item]
 ;;here bill-amount will store the result
 (loop [counter (count list-item)
 i 0
 bill-amount 0.0]
 (if (<= counter 0)
 bill-amount
 (recur
 (dec counter)
 (inc i)
 (+ bill-amount (* (:price (get bill i)) (:quantity (get bill i))))))))

What is bill?

Tuesday, September 22, 15

16

(defn calcx [eqn eqn' x]
 (- x (/ (eqn x) (eqn' x))))
(defn find-root [tolerance eqn guess]
 (let [px (make-poly eqn) px' (make-poly (differentiate eqn))]
 (let [x1 (calcx px px' guess)]
 (if (<= (Math/abs (- guess x1)) tolerance)
 (format "%.6f" guess)
 (find-root tolerance eqn x1)))))

Tuesday, September 22, 15

17

(defn calcx [eqn eqn' x]
 (- x (/ (eqn x) (eqn' x))))

(defn find-root [tolerance eqn guess]
 (let [px (make-poly eqn)
 px' (make-poly (differentiate eqn))
 x1 (calcx px px' guess)]
 (if (<= (Math/abs (- guess x1)) tolerance)
 (format "%.6f" guess) ;;don’t return a string
 (find-root tolerance eqn x1)))))

Tuesday, September 22, 15

18

(defn make-poly[x](fn polynomial[y] (+ (* (first(first x)) (exp y (second(first x)))) (* (first(second
x)) (exp y (second(second x)))) (* (first(nth x 2)) (exp y (second(nth x 2)))))))

(defn make-poly
 [x]
 (fn polynomial [y]
 (+ (* (first(first x)) (exp y (second(first x))))
 (* (first(second x)) (exp y (second(second x))))
 (* (first(nth x 2)) (exp y (second(nth x 2)))))))

Tuesday, September 22, 15

19

;; Wrong name -1
(defn polynomial [poly]
 (fn [x](double(reduce + (map #(* (nth % 0)(reduce * (repeat (nth % 1) x)))poly)))))

Tuesday, September 22, 15

20

(defn find-root [epsilon list guess]
 (let [result-x (- guess(/(/((poly-maker list)guess)((poly-maker(differentiate list))guess)) 1.0))])

 (if (<=(abs(- result-x guess))epsilon)

 result-x

 (find-root epsilon list result-x)
)

)

Tuesday, September 22, 15

21

(declare item-bill) ;;; added so could run code -1

(defn bill-total
 [bill]
 (if (> (count bill) 1)
 (+ (item-bill (peek bill)) (bill-total (pop bill)))
 (item-bill (peek bill))))

(defn item-bill
 [item]
 (* (get item :price) (get item :quantity)))

(bill-total bill)

Tuesday, September 22, 15

22

(defn add-to-bill [bill items] (let [
 new-bill1 (new-item bill items)
 new-bill2 (merge-item bill items)
]
 (new-bill new-bill1 new-bill2)

))

(defn add-to-bill
[bill items]
(let [new-bill1 (new-item bill items)

 new-bill2 (merge-item bill items)]
 (new-bill new-bill1 new-bill2)))

Tuesday, September 22, 15

23

(defn find-root[small-limit poly x0]
 (
 let [;Px stores the value of the evaluated polynomial
 Px (calculate-poly poly x0)
 ;P-x stores the value of the derivative of the polynomial evaluated with X0 value
 P-x (calculate-poly (differentiate poly) x0)
]

 (let [x (into[](take 10 (iterate #(calculate-xn poly %)x0)))

 ;x-range (range(count x))
 ;x0-x1
 root-guess-1 (- (x 0)(x 1))
 ; x2-x1
 root-guess-2 (- (x 1)(x 2))
 ; x3-x2
 root-guess-3 (- (x 3)(x 4))
 ; x4-x3
 root-guess-4 (- (x 4)(x 5))
 ; x5-x4
 root-guess-5 (- (x 5)(x 6))
]
 (x 4)

)
)
)

Tuesday, September 22, 15

24

(defn make-poly2 [poly x]

 (loop [i 0 tot 0]

 (if(< i (count poly))

 (recur (inc i) (+ tot (* (get (get poly i) 0) (Math/pow x (get (get poly i) 1)))))

 tot

)

)

)

Tuesday, September 22, 15

25

(defn make-poly2 [poly x]
 (loop [i 0
 tot 0]
 (if (< i (count poly))
 (recur

(inc i)
(+ tot (* (get (get poly i) 0) (Math/pow x (get (get poly i) 1)))))

 tot
)
)
)

Tuesday, September 22, 15

26

Unit Tests

Tuesday, September 22, 15

27

(deftest test-problem1
 (testing "Problem 1"
 (are [bill total]
 (= (int (bill-total bill)) (int total))
 [{:name "a" :price 1 :quantity 1}] 1
 [{:name "a" :price 10 :quantity 2.0}] 20.0
 [{:name "a" :price 10 :quantity 0}] 0
 [{:name "a" :price 2 :quantity 1}
 {:name "a" :price 3 :quantity 2}] 8)))

Tuesday, September 22, 15

Used in Testing Problem 2

28

(defn vec->bill
 "Used to condense bill map size"
 [[name quantity]]
 {:name name :price 1 :quantity quantity})

(defn inflate-bill
 [bill-vec]
 (mapv vec->bill bill-vec))

(inflate-bill [["a" 1]])
=> [{:name "a", :price 1, :quantity 1}]
(inflate-bill [["a" 2] ["b" 5]])
=> [{:name "a", :price 1, :quantity 2} {:name "b", :price 1, :quantity 5}]

Tuesday, September 22, 15

29

(deftest test-problem2
 (testing "Problem 2"
 (are [bill add result]
 (let [[bill-maps add-maps result-maps] (mapv inflate-bill [bill add result])
 computed (add-to-bill bill-maps add-maps)
 correct? (and
 (= (count computed) (count result-maps))
 (= (set computed) (set result-maps)))]
 (when-not correct?
 (println "computed: " computed)
 (println "correct answer: " result-maps))
 true)
 [["a" 1]] [["b" 1]] [["a" 1] ["b" 1]]
 [["a" 1]] [["a" 2]] [["a" 3]]
 [["a" 1]] [["b" 1]] [["a" 1] ["b" 1]]
 ;[["a" 1]] [] [["a" 1]]
 ;[] [["a" 1]] [["a" 1]]
 [["a" 1] ["b" 2]] [["a" 2] ["c" 2]] [["a" 3] ["b" 2] ["c" 2]]
 [["a" 1] ["b" 2]] [["a" 2] ["b" 2]] [["a" 3] ["b" 4]])))

Tuesday, September 22, 15

30

(deftest test-problem3
 (are [func-vec x y]
 (= (int ((make-poly func-vec) x)) y)
 [[1 1]] 2 2
 [[2 1]] 2 4
 [[2 1] [3 0]] 1 5
 [[3 2] [-3 0]] 2 9
 [[3 2] [-2 1] [5 0]] 1 6
 [[3 2] [-2 1] [5 0]] 2 13
 [[3 2] [-2 1] [5 0]] 3 26
 ;[] 0 0
))

Tuesday, September 22, 15

31

(deftest test-problem4
 (are [func-vec derivative]
 (= (differentiate func-vec) derivative)
 [[1 1]] [[1 0]]
 [[2 2]] [[4 1]]
 [[2 3]] [[6 2]]
 [[2 20]] [[40 19]]
 [[3 3] [2 2] [1 1] [5 0]] [[9 2] [4 1] [1 0]]))

Tuesday, September 22, 15

32

(defn test-abs
 [n]
 (max n (- n)))

(defn near
 ([x y]
 (near (float x) y 0.1))
 ([x y delta]
 (let [diff (- x y)]
 (< (test-abs diff) delta))))

(deftest test-problem5
 (are [delta func-vec start root]
 (near (find-root delta func-vec start) root)
 0.0001 [[1 2] [-1 0]] 10 1
 0.0001 [[1 2] [-1 0]] -10 -1
 0.0001 [[6 2] [1 1] [-1 0]] 10 0.3333
 0.0001 [[1 2] [-4 1] [4 0]] 10 2
 0.0001 [[1 3] [-1 2] [-8 1] [12 0]] -4 -3))

Tuesday, September 22, 15

33

Tuesday, September 22, 15

Use spaces, no tabs

34

;; good
(when something
 (something-else))

(with-out-str
 (println "Hello, ")
 (println "world!"))

;; bad - four spaces
(when something
 (something-else))

;; bad - one space
(with-out-str
 (println "Hello, ")
 (println "world!"))

Tuesday, September 22, 15

35

;; good
(filter even?
 (range 1 10))

;; bad
(filter even?
 (range 1 10))

Vertically align function (macro) arguments spanning multiple lines

Tuesday, September 22, 15

36

;; good
(filter
 even?
 (range 1 10))

(or
 ala
 bala
 portokala)

;; bad - two-space indent
(filter
 even?
 (range 1 10))

(or
 ala
 bala
 portokala)

Use a single space indentation for function (macro) arguments when there are
no arguments on the same line as the function name

Tuesday, September 22, 15

37

Vertically align let bindings and map keywords

;; good
(let [thing1 "some stuff"
 thing2 "other stuff"]
 {:thing1 thing1
 :thing2 thing2})

;; bad
(let [thing1 "some stuff"
 thing2 "other stuff"]
 {:thing1 thing1
 :thing2 thing2})

Tuesday, September 22, 15

38

;; good
(defn foo
 [x]
 (bar x))

;; good
(defn foo [x]
 (bar x))

;; bad
(defn foo
 [x] (bar x))

Optionally omit the new line between the function name and argument vector
for defn when there is no docstring

Tuesday, September 22, 15

39

;; good
(defn foo [x]
 (bar x))

;; good for a small function body
(defn foo [x] (bar x))

;; good for multi-arity functions
(defn foo
 ([x] (bar x))
 ([x y]
 (if (predicate? x)
 (bar x)
 (baz x))))

;; bad
(defn foo
 [x] (if (predicate? x)
 (bar x)
 (baz x)))

Optionally omit the new line between the
argument vector and a short function body

Tuesday, September 22, 15

40

;; good
(defn foo
 "Hello there. This is
 a multi-line docstring."
 []
 (bar))

;; bad
(defn foo
 "Hello there. This is
a multi-line docstring."
 []
 (bar))

Indent each line of multi-line docstrings

Tuesday, September 22, 15

41

;; good
(foo (bar baz) quux)

;; bad
(foo(bar baz)quux)
(foo (bar baz) quux)

If any text precedes an opening bracket((, { and [)
or follows a closing bracket(), } and]), separate that
text from that bracket with a space. Conversely,
leave no space after an opening bracket and before
following text, or after preceding text and before a
closing bracket

Tuesday, September 22, 15

42

Don't use commas between the elements of sequential collection literals

;; good
[1 2 3]
(1 2 3)

;; bad
[1, 2, 3]
(1, 2, 3)

Tuesday, September 22, 15

43

Use empty lines between top-level forms

;; good
(def x ...)

(defn foo ...)

;; bad
(def x ...)
(defn foo ...)

Tuesday, September 22, 15

44

An exception to the rule is the grouping of related defs together

;; good
(def min-rows 10)
(def max-rows 20)
(def min-cols 15)
(def max-cols 30)

Tuesday, September 22, 15

45

Avoid functions longer than 10 LOC (lines of code).
Ideally, most functions will be shorter than 5 LOC

Avoid parameter lists with more than three or four positional parameters

Avoid forward references

Tuesday, September 22, 15

46

Don't define vars inside functions

;; very bad
(defn foo []
 (def x 5)
 ...)

Tuesday, September 22, 15

47

 Prefer vec over into when you need to convert a sequence into a vector

;; good
(vec some-seq)

;; bad
(into [] some-seq)

Tuesday, September 22, 15

48

Use when instead of (if ... (do ...)

;; good
(when pred
 (foo)
 (bar))

;; bad
(if pred
 (do
 (foo)
 (bar)))

Tuesday, September 22, 15

49

Use when-not instead of (when (not ...) ...)

;; good
(when-not pred
 (foo)
 (bar))

;; bad
(when (not pred)
 (foo)
 (bar))

Tuesday, September 22, 15

50

Use not= instead of (not (= ...))

;; good
(not= foo bar)

;; bad
(not (= foo bar))

Tuesday, September 22, 15

51

Use lisp-case for function and variable names

;; good
(def some-var ...)
(defn some-fun ...)

;; bad
(def someVar ...)
(defn somefun ...)
(def some_fun ...)

Tuesday, September 22, 15

52

The names of predicate methods (methods that return a boolean
value) should end in a question mark

;; good
(defn palindrome? ...)

;; bad
(defn palindrome-p ...) ; Common Lisp style
(defn is-palindrome ...) ; Java style

Tuesday, September 22, 15

53

Use -> instead of to in the names of conversion functions

;; good
(defn f->c ...)

;; not so good
(defn f-to-c ...)

Tuesday, September 22, 15

54

f, g, h - function input
n - integer input usually a size
index, i - integer index
x, y - numbers
xs - sequence
m - map
s - string input
re - regular expression
coll - a collection
pred - a predicate closure
& more - variadic input
xf - xform, a transducer

Follow clojure.core's example for idiomatic names like pred and coll

Tuesday, September 22, 15

