CS 696 Functional Programming and Design
Fall Semester, 2015
Doc 11 Records, Protocols, References
Oct 1, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, October 1, 15

Records

Thursday, October 1, 15

Defining Clojure Types

(defrecord Point [x y]) Both

_ Compile to Java class with final fields
(deftype Point [x y])

Accessing & updating fields faster than
Clojure maps

deftype - lower level construct Use Java naming convention

Thursday, October 1, 15

Creating & Accessing

(defrecord Point [x y])

(def a (Point. 2 3))

(.x a) 2
(:x a) 2
(:za0) 0

Thursday, October 1, 15

Creating with Types

(defrecord NamedPoint [*String name *long x *long y])
(def b (NamedPoint. "Small" 2 4))
(:x b)

(NamedPoint/getBasis) [name X y]

This avoid the autoboxing of the values

Thursday, October 1, 15

Records

Support value semantics
Act like maps
Metadata support

Reader support

Thursday, October 1, 15

Value Semantics

Immutable

If fields of two records are equal than Records are equal

(= (Point. 1 2) (Point. 1 2)) true
(=3 3N) true
(= (Point. 1 2) (Point. 1N 2N)) true

Thursday, October 1, 15

Records are like Maps

(let [{:keys [x yI} (Point. 2 3)] 2
X)
(assoc (Point. 1 2) :z 5) #user.Point{:x 1, 1y 2, :z 5}
(dissoc (Point. 1 2) :x) ty 2)
(seq (Point. 1 2)) ([x 1] [y 2])
(into {} (Point. 3 4)) {x 3, 1y 4}

assoc returns a Point
dissoc returns a map

Thursday, October 1, 15

But Records are not Maps

(= (Point. 12) {ix 1y 2}) false
((Point. 1 2) :x) Exception
({:x1:y 2} x) 1

(:x (Point. 1 2)) 1

(.x (Point. 1 2)) 1

(get (Point. 1 2) :x) 1

Thursday, October 1, 15

Records are not Defined in Namespaces

Records are Java Classes
Not included when import/require Clojure namespace
Have to require the Record

Namespace record is declared in is part of the full name of the Record

Thursday, October 1, 15

Auxiliary Constructor

(Point. 1 2 {:foo :bar} {:z 3})

\

metadata More fields

Thursday, October 1, 15

Constructors & Factory Functions

Text recommends you provide functions to create records
Functions can be used by higher order functions

Makes it easier to change record definition

Thursday, October 1, 15

Built in Factory Methods

->RecordType positional
map->RecordType from a map
(->Point 2 3)

(map->Point {:y 2 :x 1})

Thursday, October 1, 15

Records verses Maps

Performance
Records define Java class

Faster access to values

Operations with data can be faster

Documentation
Records specify what fields they must contain

Thursday, October 1, 15

Some Clojure Performance

(defi 5)
(def s "12")

(.toString s)

(.toString 1) No type information forior s

So how to select correct toString method at runtime?

Use Java reflection - which is slow

Thursday, October 1, 15

*warn-on-reflection”

(def i 5)
(def s "12")
=> |

=>g

(set! *warn-on-reflection™ true)
=> {rue

(.toString s)

Reflection warning, /private/var/folders/br/q_fcsjqc8xj9qn0059bctj3h0000gr/T/form-
iNit8847540080428279079.clj:1:1 - reference to field toString can't be resolved.

=> "1 2"

Thursday, October 1, 15

*warn-on-reflection”

(def i 5)
(def s "12")
=> I
=> g

(set! *warn-on-reflection™ true)
=> true

(.toString AString s)
=> ||12||

(.toString *Long i)
=> l|5l|

Thursday, October 1, 15

Protocols

Thursday, October 1, 15

Protocols

Like Java interfaces

Contains one or more methods

Each method can have multiple arities
Each method has at least one argument

Single dispatch on first argument

(defprotocol ProtocolName
"documentation”
(a-method [this arg1 arg2] "method docstring”)
(another-method [x] [x arg] "docstring"))

Thursday, October 1, 15

Protocols

(defprotocol Shape
(area [S]) (area (CirCIe. 2))
(perimeter [s])) (area (Rectangle. 2 3))

(defrecord Rectangle [length width]
Shape
(area [this] (* length width))
(perimeter [this] (+ (* 2 length)
(* 2 width))))

(defrecord Circle [radius]
Shape
(area [this] (* (Math/Pl) radius radius))
(perimeter [this] (* 2 (Math/Pl) radius)))

20

Thursday, October 1, 15

Extending Existing Types

(defprotocol FIFO
(fifo-push [fifo value])
(fifo-pop [fifo])
(fifo-peek [fifo]))

(fifo-pop [1 2 3 4])
(fifo-peek [1 2 3])

(extend-type clojure.lang.IPersistentVector
FIFO
(fifo-push [vector value]
(conj vector value))
(fifo-pop [vector]
(pop vector))
(fifo-peek [vector]
(last vector)))

21

Thursday, October 1, 15

Extending Existing Types

(extend-type clojure.lang.PersistentList (fifo-push '(1 2 3) 4)
FIFO
(fifo-push [seq value]
(conj seq value))
(fifo-pop [seq]
(pop seq))
(fifo-peek [seq]
(first seq)))

22

Thursday, October 1, 15

References

23

Thursday, October 1, 15

Time, State, Identity

Time
Relative moments when an event occurs

State
Snapshot of entity’s properties at a moment in time

|dentity
Logical entity identified by a common stream of states occurring over time

24

Thursday, October 1, 15

State & Identity Different things in Clojure

{:name “Sarah” {:name “Sarah” {:name “Sarah”

:age 10 -age 11 -age 12

‘wears-glasses false} ‘wears-glasses false} :wears-glasses true}
A

(def sarah

25

Thursday, October 1, 15

Java

class Person {
public String name;
public int age;
public boolean wearsGlasses;

public Person (String name, int age, boolean wearsGlasses) {
this.name = name;
this.age = age;
this.wearsGlasses = wearsGlasses;

}

26

Thursday, October 1, 15

State & |dentity Complexted in Java

Person sarah

27

Thursday, October 1, 15

Memento Pattern

Store an object's internal state, so the object can be restored to this state later
without violating encapsulation

State is immutable so when make changes still have orginial

Don’t need a pattern to copy old state

28

Thursday, October 1, 15

Reference Type Basics .

deref

var, ref, atom, agent

| value

All are pointers

Reference type

Can change pointer to point to different data

Dereferencing will never block

Each type as different way of setting/changing its value

29

Thursday, October 1, 15

Reference Type Basics .

deref

var, ref, atom, agent

| value

Each type Reference type

Can have meta data

Can have watches (observers)
Call specified function when value is change

Can have validator
Enforce constraints on values pointer can point to

30

Thursday, October 1, 15

Features of each Type

Ref Agent Atom Var coordinated uncoordinated

Coordinated X §
2| Refs | Atoms

Asynchronous X g

Retriable X X 4
Thread-local X é Agents

Synchronous - block until operation completes
Asynchronous - Non blocking, operation can compete on separate thread
Coordinated - Supports transactions

Thread-local - Changes made are local to current thread

31

Thursday, October 1, 15

Creating & Referencing Each Type

(def ref-example (ref 10))
@ref-example
(deref ref-example)

(def agent-example (agent 10))
@agent-example
(deref agent-example)

(def atom-example (atom 10))
@atom-example
(deref atom-example)

(def var-example 10)

var-example Note the difference

32

Thursday, October 1, 15

Watches

(defn cat-watch Output in Console

[key pointer old new]

(println "Watcher" key pointer old new)) Watcher :cat #'user/cat 4 10
(def cat 4)

(add-watch (var cat) :cat cat-watch)
(def cat 10)
(remove-watch (var cat) :cat)

(def cat 20)

33

Thursday, October 1, 15

Observer Pattern

One-to-many dependency between objects

When one object changes state,

all its dependents are notified and updated
automatically

Watches provide same functionality as the Observer pattern

34

Thursday, October 1, 15

Validator

(def cat 4)
(set-validator! (var cat) #(> 10 %))
(def cat 9)

(def cat 20) ;;exception

35

Thursday, October 1, 15

Atoms

Changes are
Synchronous
Uncoordinated
Atomic

Synchronous

Code waits until change done

Uncoordinated

36

No transaction support

Atomic
Threads only see old or new value
Never see partially changed data

Thursday, October 1, 15

Atoms - Methods for change

swap!
Applies function to current state for new state

reset!
Changes state to given value

compare-and-set!
Changes state to given value only if current value is what you think it is

37

Thursday, October 1, 15

reset!

(def a (atom 0))

@a

(reset! a 5)

@a

38

Thursday, October 1, 15

swap!
(def a (atom 0))

@a

(swap! a inc)

@a

39

Thursday, October 1, 15

swap!

(def sarah (atom {:name "Sarah" :age 10 :wears-glasses? false}))

(swap! sarah update-in [:age] + 3) {:name "Sarah", :age 13,
‘wears-glasses? false}

@sarah {:name "Sarah", :age 13,
‘wears-glasses? false}

40

Thursday, October 1, 15

swap! is Atomic

(swap! sarah (comp #(update-in % [:age] inc)
#(assoc % :wears-glasses? true)))

Compound operation on sarah

What happens if other thread reads sarah during swap!

It gets the old value

41

Thursday, October 1, 15

swap! is Atomic

(swap! sarah (comp #(update-in % [:age] inc)
#(assoc % :wears-glasses? true)))

What happens if other thread modifies sarah during swap!

It retries until it can read the new value

Then modifies sarah

42

Thursday, October 1, 15

43

Thursday, October 1, 15

Recall - Future

Computes body on another thread
Use @ or deref to get answer

@, deref blocks until computation is done

(def long-calculation (future (apply + (range 1e8))))
@long-calculation

44

Thursday, October 1, 15

Macro from Text

(wait-futures n 1 2 ... fk)

Runs each function in n different futures

(wait-futures console
3 Hi Mom

(println "Hi Mom") Hi Dad
(println "Hi Dad")) Hi Mom

Hi Dad

Hi Dad

Hi Mom

45

Thursday, October 1, 15

Showing the Retries

(def xs (atom [1 2 3])) Console

(wait-futures 2 trying 4

(swap! xs (fn [v] try!ng 4
(Thread/sleep 400) trying >
(printin "trying 4") trying 5
(conj v 4))) trying 4
(swap! xs (fn [v] try!ng 5
(Thread/sleep 500) trying>
(println "trying 5") trying S trying 5
trying 5

(conj v 9))))

@xs [1234455]

46

Thursday, October 1, 15

compare-and-set!

(compare-and-set! atom oldval newval)
Only changes the atom to newval if the value of atom is oldval

Used when you do’t want to change the atom after another thread does

47

Thursday, October 1, 15

Identity local to method

(defn running-sum (def bill (running-sum 10))
[n]
(let [sum (atom n)] (bill 5) 15
(fn [X] (bill 12.5) 27.5
(swap! sum + x) @sum Exception
@sum)))

48

Thursday, October 1, 15

Var

Private
Docstrings
Constants
Dynamic Scope

49

Thursday, October 1, 15

Private Var

(def A:private life 42)

(def M:private true} life 42

(defn- foo [] “foo”)

(def A:private (fn [] “foo”)

50

Private vars
Can be accessed outside of defining
namspace using the full name

Thursday, October 1, 15

Docstrings

(def a
“Sample doc string”
10)
(defn b (def b
“Another doc string” “Another doc string”
[b] (fn [b]
(inc b)) (inc b)))

51

Thursday, October 1, 15

Constants

(def max-value 255) (def *.const max-value 255)
(defn valid-value? (defn valid-value?
[V] [V]
(<= v max-value)) (<= v max-value))
(valid-value? 270) false (valid-value? 270) false
(def max-value 511) (def max-value 511)
max-value 511 max-value 911

(valid-value? 270) true (valid-value? 270) false

52

Thursday, October 1, 15

Dynamic Scoping

(def A:dynamic *max-value™® 255)

(defn valid-value? [v]
(<= v "max-value®))

(valid-value? 270) false

(binding [*max-value™® 511]
(valid-value? 270)) true

(valid-value? 270) false

53

Thursday, October 1, 15

Dynamic Scoping - Works across Threads

(binding [*max-value™® 500]
(printin (valid-value 299)) true
@(future (valid-value 299))) true

54

Thursday, October 1, 15

Dynamic Scoping - Need *:dynamic

(def *max-value™ 255)

(defn valid-value? [v]
(<= v "max-value®))

(valid-value? 270) false

(binding [*max-value™® 511]
(valid-value? 270)) Exception

(valid-value? 270)

55

Thursday, October 1, 15

Dynamic Scoping - const wins

(def A:dynamic “const *max-value™ 255)
(defn valid-value?

[V]

(<= v "max-value®))

(valid-value? 270) false

(binding [*'max-value™® 511]
(valid-value? 270)) false

(valid-value? 270) false

56

Thursday, October 1, 15

Sample uses

In repl (not in light table)

*print-length™ - var use in print to determine how many items in a collection to

print out
(set! *print-length™ 3)
(iterate inc 0) (012...)
(set! *print-length™ 10)
(iterate inc 0) (0123456789...)

Default settings that don’t change very often

57

Thursday, October 1, 15

*warn-on-reflection”

user=> (def i 23)

#'user/i

user=> (.toString i)

o3

user=> (set! *warn-on-reflection™ true)

true

user=> (.toString i)

Reflection warning, NO_SOURCE_PATH:1:1 - reference to field toString can't be
resolved.

o3

user=> (def *Long i 23)
#'userli

user=> (.toString i)
o

58

Thursday, October 1, 15

What is Going On?

Java is statically typed

Clojure compiles to Java

Clojure infers the types of data

If can not infer uses Java's reflection

Reflection is slow

*warn-on-reflection® used to find out when reflection is used

Add type hints to avoid relection

59

Thursday, October 1, 15

Type Hints Example

(defn AFloat sum-square
[*loats xs]
(let [Mloats squares (map #(* % %) xs)]
(reduce + squares)))

60

Thursday, October 1, 15

alter-var-root (alter-var-root a-var f & args)

Changes the root value of a-var by applying f to a-var
and binding a-var to the result

(defn foo

[n]

(inc n))

(alter-var-root

(var foo) Console
(fn [f] fooing 2
#(do (printin "fooing" %)
(f %))))

(foo 2)

6l

Thursday, October 1, 15

Aspect-Oriented Programming

Separation of cross-cutting concerns

Before, after, around methods

Logging
cross-cuts all classes/methods you want to log

62

Thursday, October 1, 15

alter-var-root

Allows us to implement AOP
Show execution of program
Coverage tool

Profile tool

63

Thursday, October 1, 15

Ref

Coordinated reference type
Multiple values can be changed
Changes are atomic

No Race conditions

No deadlocks

No manual locks, monitors etc

64

Thursday, October 1, 15

Software Transactional Memory

Ref changes are done in a transaction
No changes are visible out side transaction until transaction is completed

Exceptions abort the transaction

If
Transaction A and B modify one or more of the same refs

Transaction A starts before B, but ends between B’s start and end
Then

Transaction B will retry with the new values of the refs

65

Thursday, October 1, 15

Starting a Transaction

(dosync form1 form2 ... formN)

66

Thursday, October 1, 15

Altering a ref

(alter ref fun & args)

Applys the fun to the ref to get new value

(ref-set ref val)

Sets the ref to val

67

Thursday, October 1, 15

Example

(def sam-account (ref 10))
(def pete-account (ref 20))

(set-validator! sam-account #(< 0 %))
(set-validator! pete-account #(< 0 %))

(defn sam-pay-pete
[amount]
(dosync
(alter pete-account + amount)
(alter sam-account - amount)))

68

(sam-pay-pete 8)
@sam-account
@pete-account
(sam-pay-pete 8)
@sam-account

@pete-account

2

28
Exception
2

28

Thursday, October 1, 15

