
CS 696 Functional Programming and Design
Fall Semester, 2015

Doc 11 Records, Protocols, References
Oct 1, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, October 1, 15

2

Records

Thursday, October 1, 15

Defining Clojure Types

3

(defrecord Point [x y])

(deftype Point [x y])

Both
Compile to Java class with final fields

Accessing & updating fields faster than
Clojure maps

Use Java naming conventiondeftype - lower level construct

Thursday, October 1, 15

Creating & Accessing

4

(defrecord Point [x y])

(def a (Point. 2 3))

(.x a)

(:x a)

(:z a 0)

2

2

0

Thursday, October 1, 15

Creating with Types

5

(defrecord NamedPoint [^String name ^long x ^long y])

(def b (NamedPoint. "Small" 2 4))

(:x b)

(NamedPoint/getBasis) [name x y]

This avoid the autoboxing of the values

Thursday, October 1, 15

Records

6

Support value semantics

Act like maps

Metadata support

Reader support

Thursday, October 1, 15

Value Semantics

7

Immutable

If fields of two records are equal than Records are equal

(= (Point. 1 2) (Point. 1 2))

(= 3 3N)

(= (Point. 1 2) (Point. 1N 2N))

true

true

true

Thursday, October 1, 15

Records are like Maps

8

(let [{:keys [x y]} (Point. 2 3)]
 x)

(assoc (Point. 1 2) :z 5)

(dissoc (Point. 1 2) :x)

(seq (Point. 1 2))

(into {} (Point. 3 4))

2

#user.Point{:x 1, :y 2, :z 5}

{:y 2}

([:x 1] [:y 2])

{:x 3, :y 4}

assoc returns a Point
dissoc returns a map

Thursday, October 1, 15

But Records are not Maps

9

(= (Point. 1 2) {:x 1 :y 2})

((Point. 1 2) :x)

({:x 1 :y 2} :x)

(:x (Point. 1 2))

(.x (Point. 1 2))

(get (Point. 1 2) :x)

false

Exception

1

1

1

1

Thursday, October 1, 15

Records are not Defined in Namespaces

10

Records are Java Classes

Not included when import/require Clojure namespace

Have to require the Record

Namespace record is declared in is part of the full name of the Record

Thursday, October 1, 15

Auxiliary Constructor

11

(Point. 1 2 {:foo :bar} {:z 3})

metadata More fields

Thursday, October 1, 15

Constructors & Factory Functions

12

Text recommends you provide functions to create records

Functions can be used by higher order functions

Makes it easier to change record definition

Thursday, October 1, 15

Built in Factory Methods

13

(->Point 2 3)

(map->Point {:y 2 :x 1})

->RecordType positional
map->RecordType from a map

Thursday, October 1, 15

Records verses Maps

14

Performance
Records define Java class

Faster access to values

Operations with data can be faster

Documentation
Records specify what fields they must contain

Thursday, October 1, 15

Some Clojure Performance

15

(def i 5)

(def s "12")

(.toString s)
(.toString i) No type information for i or s

So how to select correct toString method at runtime?

Use Java reflection - which is slow

Thursday, October 1, 15

warn-on-reflection

16

(def i 5)
(def s "12")
=> i
=> s

(set! *warn-on-reflection* true)
=> true

(.toString s)
Reflection warning, /private/var/folders/br/q_fcsjqc8xj9qn0059bctj3h0000gr/T/form-
init8847540080428279079.clj:1:1 - reference to field toString can't be resolved.
=> "12"

Thursday, October 1, 15

warn-on-reflection

17

(def i 5)
(def s "12")
=> i
=> s

(set! *warn-on-reflection* true)
=> true

(.toString ^String s)
=> "12"
(.toString ^Long i)
=> "5"

Thursday, October 1, 15

18

Protocols

Thursday, October 1, 15

Protocols

19

Like Java interfaces

Contains one or more methods

Each method can have multiple arities

Each method has at least one argument

Single dispatch on first argument

(defprotocol ProtocolName
 "documentation"
 (a-method [this arg1 arg2] "method docstring")
 (another-method [x] [x arg] "docstring"))

Thursday, October 1, 15

Protocols

20

(defprotocol Shape
 (area [s])
 (perimeter [s]))

(defrecord Rectangle [length width]
 Shape
 (area [this] (* length width))
 (perimeter [this] (+ (* 2 length)
 (* 2 width))))

(defrecord Circle [radius]
 Shape
 (area [this] (* (Math/PI) radius radius))
 (perimeter [this] (* 2 (Math/PI) radius)))

(area (Circle. 2))
(area (Rectangle. 2 3))

Thursday, October 1, 15

Extending Existing Types

21

(defprotocol FIFO
 (fifo-push [fifo value])
 (fifo-pop [fifo])
 (fifo-peek [fifo]))

(extend-type clojure.lang.IPersistentVector
 FIFO
 (fifo-push [vector value]
 (conj vector value))
 (fifo-pop [vector]
 (pop vector))
 (fifo-peek [vector]
 (last vector)))

(fifo-pop [1 2 3 4])
(fifo-peek [1 2 3])

Thursday, October 1, 15

Extending Existing Types

22

(extend-type clojure.lang.PersistentList
 FIFO
 (fifo-push [seq value]
 (conj seq value))
 (fifo-pop [seq]
 (pop seq))
 (fifo-peek [seq]
 (first seq)))

(fifo-push '(1 2 3) 4)

Thursday, October 1, 15

23

References

Thursday, October 1, 15

Time, State, Identity

24

Time
Relative moments when an event occurs

State
Snapshot of entity’s properties at a moment in time

Identity
Logical entity identified by a common stream of states occurring over time

Thursday, October 1, 15

State & Identity

25

{:name “Sarah”
 :age 10
 :wears-glasses false}

{:name “Sarah”
 :age 11
 :wears-glasses false}

{:name “Sarah”
 :age 12
 :wears-glasses true}

(def sarah

Different things in Clojure

Thursday, October 1, 15

Java

26

 class Person {
 public String name;
 public int age;
 public boolean wearsGlasses;

 public Person (String name, int age, boolean wearsGlasses) {
 this.name = name;
 this.age = age;
 this.wearsGlasses = wearsGlasses;

}
}

Thursday, October 1, 15

State & Identity

27

Person sarah

Sarah
10
false

Sarah
11
false

Sarah
12
true

Complexted in Java

Thursday, October 1, 15

Memento Pattern

28

Store an object's internal state, so the object can be restored to this state later
without violating encapsulation

State is immutable so when make changes still have orginial

Don’t need a pattern to copy old state

Thursday, October 1, 15

Reference Type Basics

29

reference types and their semantics make it possible to design concurrent programs that take maximum advantage of
the increasingly capable hardware we have available to us, while eliminating entire categories of bugs and failure
conditions that would otherwise go with the territory of dealing with bare threads and locks.

Clojure Reference Types
Identities are represented in Clojure using four reference types: vars, refs, agents, and atoms. All of these are very
different in certain ways, but let’s first talk about what they have in common.

At their most fundamental level, references are just boxes that hold a value, where that value can be changed by
certain functions (different for each reference type):

All references always contain some value (even if that value is nil); accessing one is always done using deref or @:

@(atom 12)
;= 12
@(agent {:c 42})
;= {:c 42}
(map deref [(agent {:c 42}) (atom 12) (ref "http://clojure.org") (var +)])
;= ({:c 42} 12 "http://clojure.org" #<core$_PLUS_ clojure.core$_PLUS_@65297549>)

Dereferencing will return a snapshot of the state of a reference when deref was invoked. This doesn’t mean there’s
copying of any sort when you obtain a snapshot, simply that the returned state—assuming you’re using immutable
values for reference state, like Clojure’s collections—is inviolate, but that the reference’s state at later points in time
may be different.

One critical guarantee of deref within the context of Clojure’s reference types is that deref will never block,
regardless of the change semantics of the reference type being dereferenced or the operations being applied to it in
other threads of execution. Similarly, dereferencing a reference type will never interfere with other operations. This
is in contrast with delays, promises, and futures—which can block on deref if their value is not yet realized—and
most concurrency primitives in other languages, where readers are often blocked by writers and vice versa.

“Setting” the value of a reference type is a more nuanced affair. Each reference type has its own semantics for
managing change, and each type has its own family of functions for applying changes according to those semantics.
Talking about those semantics and their corresponding functions will form the bulk of the rest of our discussion.

All are pointers

Can change pointer to point to different data

Dereferencing will never block

Each type as different way of setting/changing its value

var, ref, atom, agent

Thursday, October 1, 15

Reference Type Basics

30

reference types and their semantics make it possible to design concurrent programs that take maximum advantage of
the increasingly capable hardware we have available to us, while eliminating entire categories of bugs and failure
conditions that would otherwise go with the territory of dealing with bare threads and locks.

Clojure Reference Types
Identities are represented in Clojure using four reference types: vars, refs, agents, and atoms. All of these are very
different in certain ways, but let’s first talk about what they have in common.

At their most fundamental level, references are just boxes that hold a value, where that value can be changed by
certain functions (different for each reference type):

All references always contain some value (even if that value is nil); accessing one is always done using deref or @:

@(atom 12)
;= 12
@(agent {:c 42})
;= {:c 42}
(map deref [(agent {:c 42}) (atom 12) (ref "http://clojure.org") (var +)])
;= ({:c 42} 12 "http://clojure.org" #<core$_PLUS_ clojure.core$_PLUS_@65297549>)

Dereferencing will return a snapshot of the state of a reference when deref was invoked. This doesn’t mean there’s
copying of any sort when you obtain a snapshot, simply that the returned state—assuming you’re using immutable
values for reference state, like Clojure’s collections—is inviolate, but that the reference’s state at later points in time
may be different.

One critical guarantee of deref within the context of Clojure’s reference types is that deref will never block,
regardless of the change semantics of the reference type being dereferenced or the operations being applied to it in
other threads of execution. Similarly, dereferencing a reference type will never interfere with other operations. This
is in contrast with delays, promises, and futures—which can block on deref if their value is not yet realized—and
most concurrency primitives in other languages, where readers are often blocked by writers and vice versa.

“Setting” the value of a reference type is a more nuanced affair. Each reference type has its own semantics for
managing change, and each type has its own family of functions for applying changes according to those semantics.
Talking about those semantics and their corresponding functions will form the bulk of the rest of our discussion.

var, ref, atom, agent

Each type

Can have meta data

Can have watches (observers)
Call specified function when value is change

Can have validator
Enforce constraints on values pointer can point to

Thursday, October 1, 15

Features of each Type

31

Ref Agent Atom Var

Coordinated X

Asynchronous X

Retriable X X

Thread-local X

Synchronous - block until operation completes

Asynchronous - Non blocking, operation can compete on separate thread

Coordinated - Supports transactions

Thread-local - Changes made are local to current thread

In addition to all being dereferenceable, all reference types:

May be decorated with metadata (see Metadata). Rather than using with-meta or vary-meta, metadata on
reference types may only be changed with alter-meta!, which modifies a reference’s metadata in-place.[133]

Can notify functions you specify when the their state changes; these functions are called watches, which we
discuss in Watches.

Can enforce constraints on the state they hold, potentially aborting change operations, using validator functions
(see Validators).

Classifying Concurrent Operations
In thinking about Clojure’s reference types, we’ll repeatedly stumble across a couple of key concepts that can be
used to characterize concurrent operations. Taken together, they can help us think clearly about how each type is
best used.

Coordination. A coordinated operation is one where multiple actors must cooperate (or, at a minimum, be properly
sequestered so as to not interfere with each other) in order to yield correct results. A classic example is any banking
transaction: a process that aims to transfer monies from one account to another must ensure that the credited account
not reflect an increased balance prior to the debited account reflecting a decreased balance, and that the transaction
fail entirely if the latter has insufficient funds. Along the way, many other processes may provoke similar
transactions involving the same accounts. Absent methods to coordinate the changes, some accounts could reflect
incorrect balances for some periods, and transactions that should have failed (or should have succeeded) would
succeed (or fail) improperly.

In contrast, an uncoordinated operation is one where multiple actors cannot impact each other negatively because
their contexts are separated. For example, two different threads of execution can safely write to two different files
on disk with no possibility of interfering with each other.

Synchronization. Synchronous operations are those where the caller’s thread of execution waits or blocks or sleeps
until it may have exclusive access to a given context, whereas asynchronous operations are those that can be started
or scheduled without blocking the initiating thread of execution.

Just these two concepts (or, four, if you count their duals) are sufficient to fully characterize many (if not most)
concurrent operations you might encounter. Given that, it makes sense that Clojure’s reference types were designed
to implement the semantics necessary to address permutations of these concepts, and that they can be conveniently
classified according to the types of operations for which each is suited:[134]

When choosing which reference type(s) to use for a given problem, keep this classification in mind; if you can
characterize a particular problem using it, then the most appropriate reference type will be obvious.

Thursday, October 1, 15

Creating & Referencing Each Type

32

(def ref-example (ref 10))
@ref-example
(deref ref-example)

(def agent-example (agent 10))
@agent-example
(deref agent-example)

(def atom-example (atom 10))
@atom-example
(deref atom-example)

(def var-example 10)
var-example Note the difference

Thursday, October 1, 15

Watches

33

(defn cat-watch
 [key pointer old new]
 (println "Watcher" key pointer old new))

(def cat 4)

(add-watch (var cat) :cat cat-watch)

(def cat 10)

(remove-watch (var cat) :cat)

(def cat 20)

Output in Console

Watcher :cat #'user/cat 4 10

Thursday, October 1, 15

Observer Pattern

34

One-to-many dependency between objects

When one object changes state,
 all its dependents are notified and updated
automatically

Watches provide same functionality as the Observer pattern

Thursday, October 1, 15

Validator

35

(def cat 4)

(set-validator! (var cat) #(> 10 %))

(def cat 9)

(def cat 20) ;;exception

Thursday, October 1, 15

Atoms

36

Changes are
Synchronous
Uncoordinated
Atomic

Synchronous
Code waits until change done

Uncoordinated
No transaction support

Atomic
Threads only see old or new value
Never see partially changed data

Thursday, October 1, 15

Atoms - Methods for change

37

swap!
Applies function to current state for new state

reset!
Changes state to given value

compare-and-set!
Changes state to given value only if current value is what you think it is

Thursday, October 1, 15

reset!

38

(def a (atom 0))

@a 0

(reset! a 5) 5

@a 5

Thursday, October 1, 15

swap!

39

(def a (atom 0))

@a 0

(swap! a inc) 1

@a 1

Thursday, October 1, 15

swap!

40

(def sarah (atom {:name "Sarah" :age 10 :wears-glasses? false}))

(swap! sarah update-in [:age] + 3) {:name "Sarah", :age 13,
 :wears-glasses? false}

@sarah {:name "Sarah", :age 13,
 :wears-glasses? false}

Thursday, October 1, 15

swap! is Atomic

41

(swap! sarah (comp #(update-in % [:age] inc)
 #(assoc % :wears-glasses? true)))

Compound operation on sarah

What happens if other thread reads sarah during swap!

It gets the old value

Thursday, October 1, 15

swap! is Atomic

42

(swap! sarah (comp #(update-in % [:age] inc)
 #(assoc % :wears-glasses? true)))

What happens if other thread modifies sarah during swap!

It retries until it can read the new value

Then modifies sarah

Thursday, October 1, 15

43

Figure 4-1. Interaction of conflicting swap! operations on a shared atom

If the value of atom a changes between the time when function g is invoked and the time when it returns a new
value for a (a1 and a2, respectively), swap! will discard that new value and reevaluate the call with the latest
available state of a. This will continue until the return value of g can be set on a as the immediate successor of the
state of a with which it was invoked.

There is no way to constrain swap!’s retry semantics; given this, the function you provide to swap! must be pure, or
things will surely go awry in hard-to-predict ways.

Being a synchronous reference type, functions that change atom values do not return until they have completed:

(def x (atom 2000))
;= #'user/x
(swap! x #(Thread/sleep %)) ;= nil

This expression takes at least two seconds to return.

A “bare” compare-and-set! operation is also provided for use with atoms, if you already think you know what the
value of the atom being modified is; it returns true only if the atom’s value was changed:

(compare-and-set! xs :wrong "new value")
;= false
(compare-and-set! xs @xs "new value")
;= true
@xs
;= "new value"

Thursday, October 1, 15

Recall - Future

44

(def long-calculation (future (apply + (range 1e8))))
@long-calculation

Computes body on another thread

Use @ or deref to get answer

@, deref blocks until computation is done

Thursday, October 1, 15

Macro from Text

45

(wait-futures n f1 f2 ... fk)

Runs each function in n different futures

(wait-futures
 3

(println "Hi Mom")
(println "Hi Dad"))

Hi Mom
Hi Dad
Hi Mom
Hi Dad
Hi Dad
Hi Mom

Console

Thursday, October 1, 15

Showing the Retries

46

(def xs (atom [1 2 3]))

(wait-futures 2
 (swap! xs (fn [v]
 (Thread/sleep 400)
 (println "trying 4")
 (conj v 4)))
 (swap! xs (fn [v]
 (Thread/sleep 500)
 (println "trying 5")
 (conj v 5))))

@xs

trying 4
trying 4
trying 5
trying 5
trying 4
trying 5
trying 5
trying 5 trying 5
trying 5

Console

[1 2 3 4 4 5 5]

Thursday, October 1, 15

compare-and-set!

47

(compare-and-set! atom oldval newval)
Only changes the atom to newval if the value of atom is oldval

Used when you do’t want to change the atom after another thread does

Thursday, October 1, 15

Identity local to method

48

(defn running-sum
 [n]
 (let [sum (atom n)]
 (fn [x]
 (swap! sum + x)
 @sum)))

(def bill (running-sum 10))

(bill 5)
(bill 12.5)
@sum

15
27.5
Exception

Thursday, October 1, 15

Var

49

Private
Docstrings
Constants
Dynamic Scope

Thursday, October 1, 15

Private Var

50

(def ^:private life 42)

(def ^{:private true} life 42

Private vars
Can be accessed outside of defining
namspace using the full name

(defn- foo [] “foo”)

(def ^:private (fn [] “foo”)

Thursday, October 1, 15

Docstrings

51

(def a
“Sample doc string”
10)

(defn b
“Another doc string”
[b]
(inc b))

(def b
“Another doc string”
(fn [b]
(inc b)))

Thursday, October 1, 15

Constants

52

(def ^:const max-value 255)

(defn valid-value?
 [v]
 (<= v max-value))

(valid-value? 270) false

(def max-value 511)

max-value 511

(valid-value? 270) false

(def max-value 255)

(defn valid-value?
 [v]
 (<= v max-value))

(valid-value? 270) false

(def max-value 511)

max-value 511

(valid-value? 270) true

Thursday, October 1, 15

Dynamic Scoping

53

(def ^:dynamic *max-value* 255)

(defn valid-value? [v]
 (<= v *max-value*))

(valid-value? 270) false

(binding [*max-value* 511]
 (valid-value? 270)) true

(valid-value? 270) false

Thursday, October 1, 15

Dynamic Scoping - Works across Threads

54

(binding [*max-value* 500]
 (println (valid-value 299)) true
 @(future (valid-value 299))) true

Thursday, October 1, 15

Dynamic Scoping - Need ^:dynamic

55

(def *max-value* 255)

(defn valid-value? [v]
 (<= v *max-value*))

(valid-value? 270) false

(binding [*max-value* 511]
 (valid-value? 270)) Exception

(valid-value? 270)

Thursday, October 1, 15

Dynamic Scoping - const wins

56

(def ^:dynamic ^const *max-value* 255)

(defn valid-value?
 [v]
 (<= v *max-value*))

(valid-value? 270) false

(binding [*max-value* 511]
 (valid-value? 270)) false

(valid-value? 270) false

Thursday, October 1, 15

Sample uses

57

In repl (not in light table)

print-length - var use in print to determine how many items in a collection to
print out

(set! *print-length* 3)
(iterate inc 0) (0 1 2 ...)
(set! *print-length* 10)
(iterate inc 0) (0 1 2 3 4 5 6 7 8 9...)

Default settings that don’t change very often

Thursday, October 1, 15

warn-on-reflection

58

user=> (def i 23)
#'user/i
user=> (.toString i)
"23"
user=> (set! *warn-on-reflection* true)
true
user=> (.toString i)
Reflection warning, NO_SOURCE_PATH:1:1 - reference to field toString can't be
resolved.
"23"

user=> (def ^Long i 23)
#'user/i
user=> (.toString i)
"23"

Thursday, October 1, 15

What is Going On?

59

Java is statically typed

Clojure compiles to Java

Clojure infers the types of data

If can not infer uses Java’s reflection

Reflection is slow

warn-on-reflection used to find out when reflection is used

Add type hints to avoid relection

Thursday, October 1, 15

Type Hints Example

60

(defn ^Float sum-square
 [^floats xs]
 (let [^floats squares (map #(* % %) xs)]
 (reduce + squares)))

Thursday, October 1, 15

alter-var-root

61

(alter-var-root a-var f & args)

Changes the root value of a-var by applying f to a-var
and binding a-var to the result

(defn foo
 [n]
 (inc n))

(alter-var-root
 (var foo)
 (fn [f]
 #(do (println "fooing" %)
 (f %))))

(foo 2)

Console
fooing 2

Thursday, October 1, 15

Aspect-Oriented Programming

62

Separation of cross-cutting concerns

Before, after, around methods

Logging
cross-cuts all classes/methods you want to log

Thursday, October 1, 15

alter-var-root

63

Allows us to implement AOP

Show execution of program

Coverage tool

Profile tool

Thursday, October 1, 15

Ref

64

Coordinated reference type

Multiple values can be changed

Changes are atomic

No Race conditions

No deadlocks

No manual locks, monitors etc

Thursday, October 1, 15

Software Transactional Memory

65

Ref changes are done in a transaction

No changes are visible out side transaction until transaction is completed

Exceptions abort the transaction

If
Transaction A and B modify one or more of the same refs
Transaction A starts before B, but ends between B’s start and end

Then
Transaction B will retry with the new values of the refs

Thursday, October 1, 15

Starting a Transaction

66

(dosync form1 form2 ... formN)

Thursday, October 1, 15

Altering a ref

67

(alter ref fun & args)

Applys the fun to the ref to get new value

(ref-set ref val)

Sets the ref to val

Thursday, October 1, 15

Example

68

(def sam-account (ref 10))
(def pete-account (ref 20))

(set-validator! sam-account #(< 0 %))
(set-validator! pete-account #(< 0 %))

(defn sam-pay-pete
 [amount]
 (dosync
 (alter pete-account + amount)
 (alter sam-account - amount)))

(sam-pay-pete 8)

@sam-account 2

@pete-account 28

(sam-pay-pete 8) Exception

@sam-account 2

@pete-account 28

Thursday, October 1, 15

