
CS 696 Functional Programming and Design
Fall Semester, 2015

Doc 13 Assignment 2 Comments
Oct 20, 2015

Tuesday, October 20, 15

2

(defn contains-sub-1 [text sub]
 (if (= sub (re-find (re-pattern sub) text))
 true
 false))

(defn contains-sub-1 [text sub]
 (= sub (re-find (re-pattern sub) text)))

(defn contains-pattern [text pattern]
 (= pattern (re-find (re-pattern pattern) text)))

(defn contains-pattern [text pattern]
 (re-find (re-pattern pattern) text))

Tuesday, October 20, 15

3

(defn divisors [dividend]
 (filter (fn [divisor-element]
 (if (= 0 (mod dividend divisor-element))
 true
 false
)
)
 (range 1 (inc dividend))
)
)

(defn divisors [dividend]
 (filter (fn [divisor-element]
 (= 0 (mod dividend divisor-element)))
 (range 1 (inc dividend))
)
)

(defn factor?
 [n factor]
 (= 0 (mod n factor)))

(defn divisors [dividend]
 (let [possible-factors (range 1 (inc dividend))]
 (filter factor? possible-factors)))

Tuesday, October 20, 15

4

;; 4. Write a function, pattern-count with two arguments. The first arguments is a string, lets call
;; it text, and the second argument is also a string, call it pattern. The function pattern-count
;; return the number of times the pattern occurs in the text. For example
;; (pattern-count “abababa” “aba”) returns 3
;; (pattern-count “aaaaa” “aa”) returns 4
;; (pattern-count “Abcde” “abc”) returns 0

(defn not-main-function
 [text pattern numberoftimes]
 (if (<= (count pattern) (count text))
 (let [sub-text (subs text 0 (count pattern))]
 (if (= sub-text pattern)
 (not-main-function (subs text 1) pattern (inc numberoftimes))
 (not-main-function (subs text 1) pattern numberoftimes)))
 numberoftimes))

(defn main_function
 [text pattern]
 (not-main-function text pattern 0))

not-main-function
numberoftimes
main_function
pattern-count??

Tuesday, October 20, 15

Names

5

(defn FileData

(defn splitString

(defn String->Number [str]

(defn calcSpread

Tuesday, October 20, 15

Names

6

Future assignments

If name does not follow Clojure structure lose one point

Tuesday, October 20, 15

7

(defn divisors [number]
 "Function to calculate the divisors of a number"
 (for [i (range 1 (+ number 1))
 :when (= (rem number i) 0)] i
)
)

Tuesday, October 20, 15

8

;Function returns string only if the occurence is greater than n
(defn myStringF
 [p n]
 (if (>= (second p) n)
 [(apply str (first p)) (last p)])

)

;Function returns only word from the word occurence pair
(defn return-string
 [p]
 (if nil? p)

 (first p))

Tuesday, October 20, 15

9

(defn find-abundance [x]

 (for [y (range 1 x) :when (> (abundance y) 0)] y))

Tuesday, October 20, 15

10

(defn find-pattern [count1 text pattern]

 (if (>= (count text)(count pattern))

 (do

 (if (= (subs text 0 (count pattern)) pattern)

 (find-pattern (inc count1) (subs text 1) pattern) (find-pattern count1 (subs text 1) pattern))

)count1))

Tuesday, October 20, 15

11

(defn process-lineitem [line]

 (def items (.split line "\t"))

 (if (not= (clojure.string/blank? line) true)
 (if (> (count items) 2)
 (if (not= (nth items 0) "Dy")
 (into {} { :day (convert-str-int (nth items 0)) :spread (-(convert-str-int (nth items 1)) (convert-
str-int (nth items 2)))})
)
)
)
)

(defn convert-str-int [input]
 (Integer/parseInt (clojure.string/replace input #"*" ""))
)

Tuesday, October 20, 15

Formatting

12

Bad formatting will lose points

(defn find-abundance [x]

 (for [y (range 1 x) :when (> (abundance y) 0)] y))

Tuesday, October 20, 15

13

(defn pattern-count
 [text pattern]
 (let [pattern-length (count pattern)
 pattern-sequence (seq pattern)]
 (loop [pattern-counter 0
 rem-text text]
 (if (< (count rem-text) pattern-length)
 pattern-counter
 (let [text-match? (= (take pattern-length rem-text) pattern-sequence)]
 (recur
 (if text-match?
 (inc pattern-counter)
 pattern-counter)
 (rest rem-text)))))))

Tuesday, October 20, 15

14

(defn most-frequent-word [a n]
 (map :key
 (last
 (last
 (group-by :count
 (into[]
 (distinct
 (mapv #(hash-map (keyword "key") (subs a % (+ n %))
 (keyword "count") (pattern-count a (subs a % (+ n %))))
 (range 0 (+(-(.length a)n)1))))))))))

Tuesday, October 20, 15

Atom

15

(defn pattern-count [text pattern]
 (let [len-text (count text), len-pattern (count pattern), matches (atom 0)]
 (loop [index 0]
 (if (<= (+ index len-pattern) len-text)
 (do
 (let [sub-string (subs text index (+ index len-pattern))]
 (if (= sub-string pattern)
 (swap! matches inc)
)
)
 (recur (inc index))
)
)
)
 (deref matches)
)
)

Tuesday, October 20, 15

16

(let [numbers (vec (rest (range 300)))]
 (filterv integer? (map (fn [n] (if (> (abundance n) 0) n)) numbers))
)

(defn abundant-numbers
 [n]
 (let [numbers (vec (rest (range n)))]
 (filterv integer? (map (fn [n] (if (> (abundance n) 0) n)) numbers))))

Tuesday, October 20, 15

17

(defn sub-blocks
 "Returns a collection of sequential sub-string blocks in s of size n"
 [s n]
 (map #(subs s % (+ % n)) (range (- (count s) (dec n)))))

(defn equal?
 "Returns true if s1 and s2 are equal strings"
 [s1 s2]
 (= (compare s1 s2) 0))

(defn pattern-count
 "Returns a count of the occurrences of ptrn in s"
 [s ptrn]
 (count (filter #(equal? % ptrn) (sub-blocks s (count ptrn)))))

(defn equal? [s1 s2] (= s1 s2))

Tuesday, October 20, 15

18

(defn word-blocks
 "Returns a sequence of the words in s"
 [s]
 (re-seq #"\w+" s))

(defn contains-day-data?
 "Returns true if s contains valid day data"
 [s]
 (and (not-empty s) (every? number? (map read-string (take 3 (word-blocks s))))))

(defn parse-day-data
 "Returns the parsed day data in s as a hash-map"
 [s]
 (if (contains-day-data? s)
 (let [day-data (word-blocks s)]
 (zipmap [:day-number :max-temp :min-temp] (mapv read-string (take 3 day-data))))))

(defn day-temp-spread
 "Returns the temperature spread for day"
 [day]
 (- (day :max-temp) (day :min-temp)))

(defn max-temp-spread-day
 "Returns the day with the max temperature spread"
 [day1 day2]
 (if (> (day-temp-spread day1) (day-temp-spread day2))
 day1
 day2))

(defn maximum-spread
 "Returns the day number of the day that has the largest temperature spread.
 Input is path to data file."
 [path]
 (let [lines (clojure.string/split-lines (slurp path))]
 ((reduce max-temp-spread-day (remove nil? (map #(parse-day-data %) lines))) :day-
number)))

Tuesday, October 20, 15

19

(defn fetch-data[path]
 (rest (rest (map #(clojure.string/split % #"\t") (clojure.string/split-lines (slurp path))))))

(ns gradeasssignment2.core
 (:require [clojure.string :as string]))

(defn fetch-data [path]
(->> path
 slurp
 string/split-lines
 (map #(string/split % #”\t”)

 rest
 rest))

(ns gradeasssignment2.core
 (:require [clojure.string :as string]))

(defn fetch-data [path]
(->> (slurp path)
 string/split-lines
 (map #(string/split % #”\t”)

 rest
 rest))

Tuesday, October 20, 15

20

;get-temp-range takes one argument that is path of dat file
; it skips the first two rows and calculates temp range for all the days and return in vector
(defn get-temp-range[path]
 (for [[x y z & rest] (rest (rest(map #(str/split % #"\t") (str/split-lines (slurp path)))))]
 (vector (str x) (-(Integer/parseInt (re-find (re-pattern "\\d+") y)) (Integer/parseInt (re-find (re-
pattern "\\d+") z))))))

;maximum-spread takes path of dat file and finds days with maximum temperature range.
(defn maximum-spread[path]
 (for [[x y] (second (last (sort-by first (group-by second (get-temp-range path)))))]
 x))

Tuesday, October 20, 15

21

(defn get-temp-range[path]
 (for [[x y z & rest] (rest (rest(map #(str/split % #"\t") (str/split-lines (slurp path)))))]
 (vector (str x) (-(Integer/parseInt (re-find (re-pattern "\\d+") y)) (Integer/parseInt (re-find (re-
pattern "\\d+") z))))))

Tuesday, October 20, 15

22

(defn fetch-data [path]
(->> (slurp path)
 string/split-lines
 (map #(string/split % #”\t”)

 rest
 rest))

(defn get-temp-range[path]
 (for [[x y z & rest] (fetch-data path)]
 (vector (str x) (-(Integer/parseInt (re-find (re-pattern "\\d+") y)) (Integer/parseInt (re-find (re-
pattern "\\d+") z))))))

Tuesday, October 20, 15

23

(defn fetch-data [path]
 (->> (slurp path)
 string/split-lines
 (map #(string/split % #""\t"")
 rest
 rest))

 (defn get-temp-range [path]
 (for [[x y z & rest] (fetch-data path)]
 (vector
 (str x)
 (-

(Integer/parseInt (re-find (re-pattern "\\d+") y))
(Integer/parseInt (re-find (re-pattern "\\d+") z))))))

rest not used
Repeating same code

Tuesday, October 20, 15

24

(defn fetch-data [path]
 (->> (slurp path)
 string/split-lines
 (map #(string/split % #""\t"")
 rest
 rest))

 (defn get-temp-range [path]
 (for [[x y z] (fetch-data path)]
 (vector
 (str x)
 (-

(Integer/parseInt (re-find (re-pattern "\\d+") y))
(Integer/parseInt (re-find (re-pattern "\\d+") z))))))

Tuesday, October 20, 15

25

(defn fetch-data [path]
 (->> (slurp path)
 string/split-lines
 (map #(string/split % #""\t"")
 rest
 rest))

(defn get-temp-range [path]
 (for [[x y z] (fetch-data path)]
 (vector
 (str x)
 (- (string->int y)) (string->int z))))))

(defn string->int
 [s]
 (Integer/parseInt (re-find (re-pattern "\\d+") s)))

(defn find-int
 [s]
 (re-find (re-pattern "\\d+") s))

(defn string->int
 [s]
 (-> (find-int s)
 Integer/parsInt))

(vector a b) <-> [a b]

x is a string

Tuesday, October 20, 15

26

(defn fetch-data [path]
 (->> (slurp path)
 string/split-lines
 (map #(string/split % #""\t"")
 rest
 rest))

(defn get-temp-range [path]
 (for [[x y z] (fetch-data path)]
 [x (- (string->int y)) (string->int z))]))

(defn string->int
 [s]
 (Integer/parseInt (re-find (re-pattern "\\d+") s)))

Did using [] help?

Should get-temp-range argument be path or contents of the file

get-temp-range -> temperature-range

Tuesday, October 20, 15

27

(defn divisor [x]
 (distinct (reduce #(if (zero? (mod x %2)) (conj %1 (/ x %2) %2) %1) () (range 1 (-> x (Math/
sqrt) (Math/round) (inc)))))
)

(defn divisors [x]
 (sort
 (distinct
 (reduce
 #(if (zero? (mod x %2)) (conj %1 (/ x %2) %2) %1)
 ()
 (range 1 (-> x (Math/sqrt) (Math/round) (inc)))
)
)
)
)

Tuesday, October 20, 15

28

(defn most-frequent-word1
 [mainString n]
 (into [] (filter #(get-val % (frequencies (partition n 1 mainString))) (frequencies (partition n 1
mainString)))))

(defn most-frequent-word1
 [mainString n]
 (into []
 (filter
 #(get-val % (frequencies (partition n 1 mainString)))
 (frequencies (partition n 1 mainString)))))

Tuesday, October 20, 15

29

(defn divisors
 [n]
 (filter
 (comp zero? (partial mod n)) ;a number is n's divisor iff n mod it gets 0
 (range 1 (inc n))))

Tuesday, October 20, 15

30

((defn divisors-helper
 [x y]
 (if (= 0 (mod x y))
 y
 0)) 9 1)

(defn divisors-helper
 [x y]
 (if (= 0 (mod x y))
 y
 0))

(divisors-helper 9 1)

Tuesday, October 20, 15

31

(defn find-clumps
 [string k L t]
 (let [possible-clumps (partition L 1 string)]
 (map #(apply str (first %)) (filter (fn
 [[in _]]
 (>
 (count (filter #(>= (pattern-count % in) t) possible-clumps))
 0))
 (filter #(>= (second %) t) (freq-map string k))))

))

Tuesday, October 20, 15

32

(defn max-frequent-sub [st k1]
 (apply max(vals (all-sub st k1))))

Tuesday, October 20, 15

33

;; why have argument n if you don't use it?
(defn abundant-numbers[n]
 (remove nil? (map abundant-helper (range 1 300))))

Tuesday, October 20, 15

34

(defn all-sub [st k]
 (map (fn[n] (clojure.string/join "" n))(partition k 1 st)))

(defn all-sub [st k]
 (frequencies(map (fn[n] (clojure.string/join "" n))(partition k 1 st))))

Tuesday, October 20, 15

35

(defn all-sub [st k]
 (frequencies(map (fn[n] (clojure.string/join "" n))(partition k 1 st))))

(defn max-frequent-sub [st k1]
 (apply max(vals (all-sub-a st k1))))

(defn most-frequent-word [string n]
 (let [map-result (all-sub-a string n)]
 (for [[k v] map-result
 :when (= v (max-frequent-sub string n))] k)))

(defn all-sub [st k]
 (map (fn[n] (clojure.string/join "" n))(partition k 1 st)))

redefined

Tuesday, October 20, 15

rem-astrix not used

36

(defn maximum-spread
 [file-path]
 (let[parser(parse-line-to-vec file-path)]
 (let[rem-astrix (mapv replace-helper (into[](map get-three (nthnext parser 2))))]
 (let[range-vec (map range-helper (mapv replace-helper (into[](map get-three (nthnext
parser 2)))))]
 (let [temp-max (apply max(map second range-vec))]
 (first(nth range-vec (.indexOf (map second range-vec) temp-max))))))))

Tuesday, October 20, 15

37

(defn max-spread-index
 "max-spread-index: find out the index of the map that
 has the largest spread.
 @param: path-string, destination directory."
 [path-string]
 (let [spread-kv (vec (map #(second %) (data-map directory)))]
 (let [spread-v (vec (map #(second %) spread-kv))]
 (.indexOf spread-v (apply max spread-v)))))

(defn max-spread-index
 [path-string]
 (let [spread-kv (vec (map #(second %) (data-map directory)))
 spread-v (vec (map #(second %) spread-kv))]
 (.indexOf spread-v (apply max spread-v))))

can define multiple values in one let

path-string not used

Tuesday, October 20, 15

38

(defn abundance-under-300 []
 (filter (fn [n]
 (pos? (abundance n))
)
 (range 1 (inc 300))
)
)

(defn abundant-range
 [n]
 #_(find abundant numbers less than n)
 (filter #(> (abundant %) 0) (range n)))

Tuesday, October 20, 15

39

(defn abundant-range
 [n]
 #_(find abundant numbers less than n)
 (filter #(> (abundant %) 0) (range n)))

Tuesday, October 20, 15

40

(defn abundant-range
 [n]
 #_(find abundant numbers less than n)
 (filter (comp pos? abundant) (range n)))

Tuesday, October 20, 15

41

(maximum-spread "http://www.eli.sdsu.edu/courses/fall15/cs696/assignments/weather.dat")

Tuesday, October 20, 15

42

(defn maximum-spread [path]
 (for [[x y] (second (last (sort-by first(group-by second
 (for [[x y z & rest] (rest (rest (with-open [rd (io/reader (io/file
path))]
 (->> (line-seq rd) (map #(.split ^String
% "\t")) (mapv vec)))))]
 (vector (str x) (-(Integer/parseInt (re-find (re-pattern "\\d+")
y)) (Integer/parseInt (re-find (re-pattern "\\d+") z)))))))))]
 x))

Tuesday, October 20, 15

43

(defn maximum-spread [path]
 (require '[clojure.string :as str])
 (loop [n 0
 final []]
 (if (< n (count (clojure.string/split-lines (clojure.string/replace (slurp path)#"\t" " "))))
 ; The below statement is used to add each element of "data" into a blank vector, and then
add it to a vector "final".
 (recur
 (inc n)
 (conj final (conj [] (nth (clojure.string/split-lines (clojure.string/replace (slurp path)#"\t" " "))
n))))
 (test2 (test1 final))
)
)
)

Tuesday, October 20, 15

44

(defn patt2 [list1 n]
 (partition n (for [x (range (- (count list1) (- n 1))) y (range n)]
 (nth list1 (+ x y))))
)

(defn patt1 [list1 n]
 (for [x (for [y (patt2 list1 n)]
 (into [] y))]
 (apply str x))
)

(defn patt [strng k l t]
 (for [x (partition l 1 strng)]
 (apply str (into [] x)))
)

;; This generates chucks of k length for all l length string above.

(defn patt2 [strng k l t]
 (let [y (map #(partition k 1 %) (patt strng k l t))
 num (count (nth y 0))]
 (partition num (for [x y cnt (range (count x))]
 (apply str (into [] (nth x cnt))))
)
)
)

Question 3

Question 5

Tuesday, October 20, 15

y not used

45

(defn vec-frequent-word [x y]
 (loop [incr 0 vect[]]
 (if (<= incr (- (count x) y))
 (recur (inc incr)
 (conj vect (vec [(subs x incr (+ incr y)) (pattern-count x (subs x incr (+ incr y)))])))
 (for [[x y] (second (last (sort-by first (group-by second (distinct vect)))))]
 x))))

Which y not used?

Tuesday, October 20, 15

How many X & Y’s?

46

;frequent-word takes three argument, first master string x, size of substring y and minimum
frequency of the substring requires.
;This function loops over master string and check each possible substring of size Y, and its
occurence in master string
;All the results are stored in vector which is checked to find strings with minimum frequency.

(defn frequent-word [x y z]
 (loop [incr 0
 vect[]]
 (if (<= incr (- (count x) y))
 (recur (inc incr)
 (conj vect (vec [(subs x incr (+ incr y)) (pattern-count x (subs x incr (+ incr y)))])))
 (for [[x y] (filter #(>= (first %) z) (group-by second (distinct vect)))]
 (for [[x y] y]
 x))
)))

Tuesday, October 20, 15

