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Quil
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http://quil.info/

Clojure/ClojureScript interactive animation library

Based on Processing
Software sketchbook used to teach programming to visual artists

LightTable instructions

https://github.com/quil/quil/wiki/Dynamic-Workflow-%28for-LightTable%29
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(ns quil-test.simple-example
  (:require [quil.core :as q]))

(defn setup []
  (q/frame-rate 2))  ; draw 2 frames/second

(defn draw-state []
  (q/line 0 0 100 0)  ; x1 y1 x2 y2
  (q/line 100 0 100 50) 
  (q/rect 100 100 50 20) ; x1 y1 (upper right) width height
  (q/ellipse 100 200 50 50))  ; x1 y1 (center) width height

(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup   ; setup function
             :draw draw-state  ; draw function
             :features [:keep-on-top])
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(ns quil-test.simple-example
  (:require [quil.core :as q]))

(defn setup []
  (q/frame-rate 2))

(defn draw-state []
  (q/fill 0 255 0)   ; rgb color for fill
  (q/stroke 255 0 0)  ; line color
  (q/line 0 0 100 0)
  (q/line 100 0 100 50)
  (q/rect 100 100 50 20)
  (q/ellipse 100 200 50 50))

(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup
             :draw draw-state
             :features [:keep-on-top])
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Basic Functions
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defsketch
Defines and starts a sketch
Many option see doc on sketch

draw
Function to draw the sketch

update
Function called just before draw
Use to update state

setup
Called once
Setup and initialize state
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Print does not work
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(defn draw-state []
  (print “In draw”)
  (q/line 0 0 100 0))

(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup
             :draw draw-state
             :features [:keep-on-top])

Draw-state run in other thread

Will  not see output
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Writing to a file
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(ns quil-test.simple-example
  (:require [quil.core :as q]))

(defn setup []
  (q/frame-rate 10))

(defn log
  [& args]
  (spit "log.txt" (str args "\n")  :append true))

(defn draw-state []
  (log "this is frame" (q/frame-count))
  (q/line 0 0 100 0))

(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup
             :draw draw-state
             :features [:keep-on-top])
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Screen not cleared
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(def y-value (atom 0))

(defn setup []
  (q/frame-rate 60)
  (reset! y-value 0))

(defn draw-state []
  (q/line 0 0  150 @y-value)
  (swap! y-value inc))

(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup
             :draw draw-state
             :features [:keep-on-top])
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Clearing the Screen
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(def y-value (atom 0))

(defn setup []
  (q/frame-rate 60)
  (reset! y-value 0))

(defn draw-state []
  (q/background 240)  ;Clear screen set backgroud color
  (q/line 0 0  150 @y-value)
  (swap! y-value inc))

(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup
             :draw draw-state
             :features [:keep-on-top])
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(defn setup []
  (q/frame-rate 2))

(defn draw-state []
  (q/background 240)
  (doseq [size [150 100 50 30 20 10]]
    (q/ellipse 150 150 size size)))

(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup
             :draw draw-state
             :features [:keep-on-top])
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Translate
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(defn setup []
  (q/frame-rate 2))

(defn draw-state []
  (q/background 240)
  (q/translate 
    (/ (q/width) 2) 
    (/ (q/height) 2))
  (q/ellipse 0 0 50 50))

(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup
             :draw draw-state
             :features [:keep-on-top])
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Translates Add up
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Translations are reset when draw function
is called again

(defn setup []
  (q/frame-rate 2))

(defn draw-state []
  (q/background 240)
  (q/translate 50 50)
  (q/ellipse 0 0 50 50)
  (q/translate 50 50)
  (q/line 0 0 100 0))

(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup
             :draw draw-state
             :features [:keep-on-top])
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(defn draw-state []
  (q/background 240)
  (q/translate 50 50)
  (q/ellipse 0 0 50 50)
  (q/reset-matrix)
  (q/translate 50 50)
  (q/line 0 0 100 0))

(defn draw-state []
  (q/background 240)
  (q/push-matrix)
  (q/translate 50 50)
  (q/ellipse 0 0 50 50)
  (q/pop-matrix)
  (q/translate 50 50)
  (q/line 0 0 100 0))

(defn draw-state []
  (q/background 240)
  (q/with-translation [50 50]
                      (q/ellipse 0 0 50 50))
  (q/translate 50 50)
  (q/line 0 0 100 0))
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Translate Fun
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(defn draw-state []
  (q/background 240)
  (q/fill 0)      ; set text to black
  (q/text "Translate/Rotation Fun" 20 20)
  (q/translate
    (/ (q/width) 2)
    (/ (q/height) 2))
  (q/line 0 0 100 0)
  (q/translate 100 0)
  (q/rotate (q/radians 90))
  (q/line 0 0 100 0)
  (q/translate 100 0)
  (q/rotate (q/radians 135))
  (q/line 0 0 100 0))
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(def message (atom "No keyboard"))

(defn keyboard-action
  []
  (let [key (q/key-as-keyword)]
    (reset! message (str "Key " key))))

(defn setup []
  (q/frame-rate 20))

(defn draw-state []
  (q/background 240)
  (q/fill 0)
  (q/scale 2.5)
  (q/translate 30 30)
  (q/text @message 0 0)
  (q/text (str (q/frame-count)) 0 20))

(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup
             :draw draw-state
             :key-pressed keyboard-action
             :features [:keep-on-top])
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(def message (atom "No keyboard"))

(defn keyboard-action
  []
  (let [key (q/key-as-keyword)]
    (reset! message (str "Key " key))
    (if (= key :r)
      (q/start-loop)
      (q/redraw))))

(defn setup []
  (q/frame-rate 20)
  (q/no-loop))

(defn draw-state []
  (q/background 240)
  (q/fill 0)
  (q/scale 2.5)
  (q/translate 30 30)
  (q/text @message 0 0)
  (q/text (str (q/frame-count)) 0 20))

(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup
             :draw draw-state
             :key-pressed keyboard-action
             :features [:keep-on-top])
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Design Patterns
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The Functional Pattern Joke
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OO Pattern Functional Equivalent

Adapter Functions

Bridge Functions

Chain of responsibility Functions

Command Functions

Composite Functions

Decorator Just Functions

Facade Functions

Flyweight Functions

Mediator Functions

Observer Functions

Strategy Functions

Template method Still Just Functions
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OO data & Functional Data
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Person
First name
Last name
age
List of phone numbers
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Person Class
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public class Person {
private int age;
private String firstName;
private String lastName;
private ArrayList phoneNumbers;

public Person(String first,String last, int age) {
this.firstName = first;
this.lastName = last;
this.age = age;
phoneNumbers = new ArrayList();

}

public int age() { return age; }
public void age(int newAge) { age = newAge;}

etc.
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Sample Use
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Person example = new Person("Sachin", "Tendulkar", 40);

int lastYearsAge = example.age();
example.age(41);

age gives access to the age value in a person

age is like a key in a hash table {:first-name "Sachin"
 :last-name "Tendulkar"
 :age 40
  :phone-numbers [] }
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Converting Objects to Clojure data
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Class Map

Field name keyword as key in map

new Person("Sachin", "Tendulkar", 40);

{:first-name "Sachin"
 :last-name "Tendulkar"
 :age 40
  :phone-numbers [] }
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Memento
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undo, rollbacks
Orginator
setMemento( Menmento m)
createMemento()
state

Memento
getState()
setState()
state

Caretaker
mementos

state=m->getState()

return new Memento( state )

Only originator:

Can access Memento’s get/set state methods
Create Memento

Store an object's internal state, so the object can be restored to this state later 
without violating encapsulation
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Copying Issues
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aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

Shallow Copy

Shallow Copy Verse Deep Copy

Original Objects
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Memento Pattern & Functional Programming
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Immutable data
No need to copy the data
Just save current data 

(def state-history (atom []))

(defn add-state
  [state]
  (swap! state-history conj state))

(defn previous-state
  []
  (let [last-state (last @state-history)]
    (swap! state-history pop)
    last-state))
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Command Pattern

26

Client

Invoker
Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Encapsulates a request as an object
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Example
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Button in a GUI

When press button remove the current selected row of table
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Command Class
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public class RemoveRowCommand extends Command {
private Table target;

public RemoveRowCommand(Table target) {
this.target = target;

}

public execute() {
int selection = target.getSelection();
target.removeRow(selection);

}
}

(defn remove-row-command
 [table]
 (fn [] (remove-row table)))
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Using the Command
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Button removeSelection = new Button();
Command removeRow = new RemoveRowCommand(ourTable);
removeSelection.action(removeRow);

Button class is written to call execute when button is pressed
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Quil Example
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(q/defsketch quil-test
             :title "Lines"
             :size [300 300]
             :setup setup
             :draw draw-state
             :key-pressed keyboard-action
             :features [:keep-on-top])
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Command Pattern Supports Undo
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Modify class
Add undo method

Keep stack of past commands

Undo
Pop the stack
Call undo on element removed from stack
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public class RemoveRowCommand extends Command {
private Table target;
private int rowIndex;
private Row removedRow;

public RemoveRowCommand(Table target) {
this.target = target;

}

public void execute() {
rowIndex = target.getSelection();
removedRow = target.getRow(rowIndex);
target.removeRow(rowIndex);

}

public void undo() {
if (removedRow == nil) return;
target.addRow(removedRow, rowIndex);
removedRow = nil;

}
}
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Undo - Using maps & multimethods
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Store the data needed for undo in a map

Use multimethod to perform undo
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Undo - Add Subtract Example
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Data needed to undo addition
Current value
Value added

{:command :add :value 10 :amount 2}

Data needed to undo subtractiom
Current value
Value subtracted

{:command :subtraction :value 10 :amount 2}
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The Multimethod
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(defmulti undo :command)

(defmethod undo :add
  [{:keys [value amount]}]
  (- value amount))

(defmethod undo :subtract
  [{:keys [value amount]}]
  (+ value amount))

(def example 
 {:command :add :value 10 :amount 2})

(undo example)
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Command History
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(def command-history (atom []))

(defn save-command
  [command]
  (swap! command-history conj command))

(defn previous-command
  []
  (let [last-command (last @command-history)]
    (swap! command-history pop)
    last-command))
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Memento Pattern
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Idea - save current state

OO implementation Functional implementation

Copy objects 
Deal with information hiding

Just save current state
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Command Pattern
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Idea: Save data needed to perform an operation

OO Implementation

Separate class for data

Interface for executing method

Functional implementation

Use map for the data
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What is the Pattern?
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The idea?

The implementation?

What is important?
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Iterator Pattern
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Provide a way to access the elements of a collection sequentially without 
exposing its underlying representation

LinkedList<Strings> strings =  new LinkedList<Strings>();

for (String element : strings) {
 if (element.size % 2 == 0)
  System.out.println(element);
}

Iterator<String> list = strings.iterator();
while (list.hasNext()){
 String element = list.next();
 if (element.size % 2 == 0)

 System.out.println(element);          
 } 
}
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Iterator Pattern - Clojure
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sequences
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Strategy Pattern
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defines a family of algorithms,
encapsulates each algorithm, and
makes the algorithms interchangeable within that family.
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Java Example
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class OrderableList {
 private Object[ ] elements;
 private Algorithm orderer;

 public OrderableList(Algorithm x) {
  orderer = x;
 }

   public void add(Object element) {
      elements = orderer.add(elements,element);
   }
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Clojure Example
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(sort-by last {:b 1 :c 3 :a 2})

Just pass in a function
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