
CS 696 Functional Programming and Design
Fall Semester, 2015

Doc 14 Quil, Design Patterns
Oct 27, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Sunday, October 25, 15

Quil

2

http://quil.info/

Clojure/ClojureScript interactive animation library

Based on Processing
Software sketchbook used to teach programming to visual artists

LightTable instructions

https://github.com/quil/quil/wiki/Dynamic-Workflow-%28for-LightTable%29

Sunday, October 25, 15

3

(ns quil-test.simple-example
 (:require [quil.core :as q]))

(defn setup []
 (q/frame-rate 2)) ; draw 2 frames/second

(defn draw-state []
 (q/line 0 0 100 0) ; x1 y1 x2 y2
 (q/line 100 0 100 50)
 (q/rect 100 100 50 20) ; x1 y1 (upper right) width height
 (q/ellipse 100 200 50 50)) ; x1 y1 (center) width height

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup ; setup function
 :draw draw-state ; draw function
 :features [:keep-on-top])

Sunday, October 25, 15

4

(ns quil-test.simple-example
 (:require [quil.core :as q]))

(defn setup []
 (q/frame-rate 2))

(defn draw-state []
 (q/fill 0 255 0) ; rgb color for fill
 (q/stroke 255 0 0) ; line color
 (q/line 0 0 100 0)
 (q/line 100 0 100 50)
 (q/rect 100 100 50 20)
 (q/ellipse 100 200 50 50))

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup
 :draw draw-state
 :features [:keep-on-top])

Sunday, October 25, 15

Basic Functions

5

defsketch
Defines and starts a sketch
Many option see doc on sketch

draw
Function to draw the sketch

update
Function called just before draw
Use to update state

setup
Called once
Setup and initialize state

Sunday, October 25, 15

Print does not work

6

(defn draw-state []
 (print “In draw”)
 (q/line 0 0 100 0))

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup
 :draw draw-state
 :features [:keep-on-top])

Draw-state run in other thread

Will not see output

Sunday, October 25, 15

Writing to a file

7

(ns quil-test.simple-example
 (:require [quil.core :as q]))

(defn setup []
 (q/frame-rate 10))

(defn log
 [& args]
 (spit "log.txt" (str args "\n") :append true))

(defn draw-state []
 (log "this is frame" (q/frame-count))
 (q/line 0 0 100 0))

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup
 :draw draw-state
 :features [:keep-on-top])

Sunday, October 25, 15

Screen not cleared

8

(def y-value (atom 0))

(defn setup []
 (q/frame-rate 60)
 (reset! y-value 0))

(defn draw-state []
 (q/line 0 0 150 @y-value)
 (swap! y-value inc))

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup
 :draw draw-state
 :features [:keep-on-top])

Sunday, October 25, 15

Clearing the Screen

9

(def y-value (atom 0))

(defn setup []
 (q/frame-rate 60)
 (reset! y-value 0))

(defn draw-state []
 (q/background 240) ;Clear screen set backgroud color
 (q/line 0 0 150 @y-value)
 (swap! y-value inc))

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup
 :draw draw-state
 :features [:keep-on-top])

Sunday, October 25, 15

10

(defn setup []
 (q/frame-rate 2))

(defn draw-state []
 (q/background 240)
 (doseq [size [150 100 50 30 20 10]]
 (q/ellipse 150 150 size size)))

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup
 :draw draw-state
 :features [:keep-on-top])

Sunday, October 25, 15

Translate

11

(defn setup []
 (q/frame-rate 2))

(defn draw-state []
 (q/background 240)
 (q/translate
 (/ (q/width) 2)
 (/ (q/height) 2))
 (q/ellipse 0 0 50 50))

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup
 :draw draw-state
 :features [:keep-on-top])

Sunday, October 25, 15

Translates Add up

12

Translations are reset when draw function
is called again

(defn setup []
 (q/frame-rate 2))

(defn draw-state []
 (q/background 240)
 (q/translate 50 50)
 (q/ellipse 0 0 50 50)
 (q/translate 50 50)
 (q/line 0 0 100 0))

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup
 :draw draw-state
 :features [:keep-on-top])

Sunday, October 25, 15

13

(defn draw-state []
 (q/background 240)
 (q/translate 50 50)
 (q/ellipse 0 0 50 50)
 (q/reset-matrix)
 (q/translate 50 50)
 (q/line 0 0 100 0))

(defn draw-state []
 (q/background 240)
 (q/push-matrix)
 (q/translate 50 50)
 (q/ellipse 0 0 50 50)
 (q/pop-matrix)
 (q/translate 50 50)
 (q/line 0 0 100 0))

(defn draw-state []
 (q/background 240)
 (q/with-translation [50 50]
 (q/ellipse 0 0 50 50))
 (q/translate 50 50)
 (q/line 0 0 100 0))

Sunday, October 25, 15

Translate Fun

14

(defn draw-state []
 (q/background 240)
 (q/fill 0) ; set text to black
 (q/text "Translate/Rotation Fun" 20 20)
 (q/translate
 (/ (q/width) 2)
 (/ (q/height) 2))
 (q/line 0 0 100 0)
 (q/translate 100 0)
 (q/rotate (q/radians 90))
 (q/line 0 0 100 0)
 (q/translate 100 0)
 (q/rotate (q/radians 135))
 (q/line 0 0 100 0))

Sunday, October 25, 15

15

(def message (atom "No keyboard"))

(defn keyboard-action
 []
 (let [key (q/key-as-keyword)]
 (reset! message (str "Key " key))))

(defn setup []
 (q/frame-rate 20))

(defn draw-state []
 (q/background 240)
 (q/fill 0)
 (q/scale 2.5)
 (q/translate 30 30)
 (q/text @message 0 0)
 (q/text (str (q/frame-count)) 0 20))

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup
 :draw draw-state
 :key-pressed keyboard-action
 :features [:keep-on-top])

Sunday, October 25, 15

16

(def message (atom "No keyboard"))

(defn keyboard-action
 []
 (let [key (q/key-as-keyword)]
 (reset! message (str "Key " key))
 (if (= key :r)
 (q/start-loop)
 (q/redraw))))

(defn setup []
 (q/frame-rate 20)
 (q/no-loop))

(defn draw-state []
 (q/background 240)
 (q/fill 0)
 (q/scale 2.5)
 (q/translate 30 30)
 (q/text @message 0 0)
 (q/text (str (q/frame-count)) 0 20))

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup
 :draw draw-state
 :key-pressed keyboard-action
 :features [:keep-on-top])

Sunday, October 25, 15

17

Design Patterns

Sunday, October 25, 15

The Functional Pattern Joke

18

OO Pattern Functional Equivalent

Adapter Functions

Bridge Functions

Chain of responsibility Functions

Command Functions

Composite Functions

Decorator Just Functions

Facade Functions

Flyweight Functions

Mediator Functions

Observer Functions

Strategy Functions

Template method Still Just Functions

Sunday, October 25, 15

OO data & Functional Data

19

Person
First name
Last name
age
List of phone numbers

Sunday, October 25, 15

Person Class

20

public class Person {
private int age;
private String firstName;
private String lastName;
private ArrayList phoneNumbers;

public Person(String first,String last, int age) {
this.firstName = first;
this.lastName = last;
this.age = age;
phoneNumbers = new ArrayList();

}

public int age() { return age; }
public void age(int newAge) { age = newAge;}

etc.

Sunday, October 25, 15

Sample Use

21

Person example = new Person("Sachin", "Tendulkar", 40);

int lastYearsAge = example.age();
example.age(41);

age gives access to the age value in a person

age is like a key in a hash table {:first-name "Sachin"
 :last-name "Tendulkar"
 :age 40
 :phone-numbers [] }

Sunday, October 25, 15

Converting Objects to Clojure data

22

Class Map

Field name keyword as key in map

new Person("Sachin", "Tendulkar", 40);

{:first-name "Sachin"
 :last-name "Tendulkar"
 :age 40
 :phone-numbers [] }

Sunday, October 25, 15

Memento

23

undo, rollbacks
Orginator
setMemento(Menmento m)
createMemento()
state

Memento
getState()
setState()
state

Caretaker
mementos

state=m->getState()

return new Memento(state)

Only originator:

Can access Memento’s get/set state methods
Create Memento

Store an object's internal state, so the object can be restored to this state later
without violating encapsulation

Sunday, October 25, 15

Copying Issues

24

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

Shallow Copy

Shallow Copy Verse Deep Copy

Original Objects

Sunday, October 25, 15

Memento Pattern & Functional Programming

25

Immutable data
No need to copy the data
Just save current data

(def state-history (atom []))

(defn add-state
 [state]
 (swap! state-history conj state))

(defn previous-state
 []
 (let [last-state (last @state-history)]
 (swap! state-history pop)
 last-state))

Sunday, October 25, 15

Command Pattern

26

Client

Invoker
Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Encapsulates a request as an object

Sunday, October 25, 15

Example

27

Button in a GUI

When press button remove the current selected row of table

Sunday, October 25, 15

Command Class

28

public class RemoveRowCommand extends Command {
private Table target;

public RemoveRowCommand(Table target) {
this.target = target;

}

public execute() {
int selection = target.getSelection();
target.removeRow(selection);

}
}

(defn remove-row-command
 [table]
 (fn [] (remove-row table)))

Sunday, October 25, 15

Using the Command

29

Button removeSelection = new Button();
Command removeRow = new RemoveRowCommand(ourTable);
removeSelection.action(removeRow);

Button class is written to call execute when button is pressed

Sunday, October 25, 15

Quil Example

30

(q/defsketch quil-test
 :title "Lines"
 :size [300 300]
 :setup setup
 :draw draw-state
 :key-pressed keyboard-action
 :features [:keep-on-top])

Sunday, October 25, 15

Command Pattern Supports Undo

31

Modify class
Add undo method

Keep stack of past commands

Undo
Pop the stack
Call undo on element removed from stack

Sunday, October 25, 15

32

public class RemoveRowCommand extends Command {
private Table target;
private int rowIndex;
private Row removedRow;

public RemoveRowCommand(Table target) {
this.target = target;

}

public void execute() {
rowIndex = target.getSelection();
removedRow = target.getRow(rowIndex);
target.removeRow(rowIndex);

}

public void undo() {
if (removedRow == nil) return;
target.addRow(removedRow, rowIndex);
removedRow = nil;

}
}

Sunday, October 25, 15

Undo - Using maps & multimethods

33

Store the data needed for undo in a map

Use multimethod to perform undo

Sunday, October 25, 15

Undo - Add Subtract Example

34

Data needed to undo addition
Current value
Value added

{:command :add :value 10 :amount 2}

Data needed to undo subtractiom
Current value
Value subtracted

{:command :subtraction :value 10 :amount 2}

Sunday, October 25, 15

The Multimethod

35

(defmulti undo :command)

(defmethod undo :add
 [{:keys [value amount]}]
 (- value amount))

(defmethod undo :subtract
 [{:keys [value amount]}]
 (+ value amount))

(def example
 {:command :add :value 10 :amount 2})

(undo example)

Sunday, October 25, 15

Command History

36

(def command-history (atom []))

(defn save-command
 [command]
 (swap! command-history conj command))

(defn previous-command
 []
 (let [last-command (last @command-history)]
 (swap! command-history pop)
 last-command))

Sunday, October 25, 15

Memento Pattern

37

Idea - save current state

OO implementation Functional implementation

Copy objects
Deal with information hiding

Just save current state

Sunday, October 25, 15

Command Pattern

38

Idea: Save data needed to perform an operation

OO Implementation

Separate class for data

Interface for executing method

Functional implementation

Use map for the data

Sunday, October 25, 15

What is the Pattern?

39

The idea?

The implementation?

What is important?

Sunday, October 25, 15

Iterator Pattern

40

Provide a way to access the elements of a collection sequentially without
exposing its underlying representation

LinkedList<Strings> strings = new LinkedList<Strings>();

for (String element : strings) {
 if (element.size % 2 == 0)
 System.out.println(element);
}

Iterator<String> list = strings.iterator();
while (list.hasNext()){
 String element = list.next();
 if (element.size % 2 == 0)

 System.out.println(element);
 }
}

Sunday, October 25, 15

Iterator Pattern - Clojure

41

sequences

Sunday, October 25, 15

Strategy Pattern

42

defines a family of algorithms,
encapsulates each algorithm, and
makes the algorithms interchangeable within that family.

Sunday, October 25, 15

Java Example

43

class OrderableList {
 private Object[] elements;
 private Algorithm orderer;

 public OrderableList(Algorithm x) {
 orderer = x;
 }

 public void add(Object element) {
 elements = orderer.add(elements,element);
 }

Sunday, October 25, 15

Clojure Example

44

(sort-by last {:b 1 :c 3 :a 2})

Just pass in a function

Sunday, October 25, 15

