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Flow of Control
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x = 2
y = x * 2
z = buzz(y)
if z < 10 

w = foo(z)
else

w = bar(z)

(-<> 2
(* 2)
buzz
(if (< <> 10) 

(foo <>) 
(bar <>))
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Observer Pattern
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Java Example

4

class Counter extends Observable  {
 private int count = 0;
   
 public int value()    {  return count; }
  
 public void increase() { 
  count++; 
  setChanged();
  notifyObservers( “INCREASE” ); 
 }
   
 public void decrease()  { 
  count--;
  setChanged();
  notifyObservers( “DECREASE” ); 
  } 
 }
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Java Observer
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class IncreaseDetector implements Observer {
 public void update( java.util.Observable whatChanged, java.lang.Object message) {
  if ( message.equals( “INCREASE” ) )  {
   Counter increased = (Counter) whatChanged;
   System.out.println( " changed to " +  increased.value());
  } 
 }

 public static void main(String[] args) {
  Counter test = new Counter();
  IncreaseDetector adding = new IncreaseDetector();
  test.addObserver(adding);
  test.increase();
}
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Flow of Control
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 public static void main(String[] args) {
  Counter test = new Counter();
  IncreaseDetector adding = new IncreaseDetector();
  test.addObserver(adding);
  test.increase();
}

Flow of control not explicit

Don’t see that increase() executes code in IncreaseDectector

 public void increase() { 
  count++; 
  setChanged();
  notifyObservers( “INCREASE” ); 
 }
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Flow of Control - Explicit

7

class Counter extends Observable  {
 private int count = 0;
 private IncreaseDetector observer =  new IncreaseDetector();

 public int value()    {  return count; }
  
 public void increase() { 
  count++; 
  observer. update(this, null);
 }
}

But less flexible
Only one observer
Have to modify code to add more or change observer
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Observer Pattern
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Reduces coupling between subject & observers
Subject can have any number of observers
Subject does not know type of the observers

Flow of control is obscured
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Observer Pattern - Basic Steps
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Subject changes
You write code to trigger notify to observers

Observer
Get notified that subject changed

You write code to react to the change
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Java Listeners
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You add a listener to an event source
The event source triggers the notification

You write code in listener to react to the event

public class Beeper extends JPanel  implements ActionListener {
    JButton button;
 
    public Beeper() {
        super(new BorderLayout());
        button = new JButton("Click Me");
        add(button, BorderLayout.CENTER);
        button.addActionListener(this);
    }
 
    public void actionPerformed(ActionEvent e) {
        Toolkit.getDefaultToolkit().beep();
    }
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Clojure Observer 
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(def counter (atom 0))

(defn counter-observer 
  [key pointer old new]
  (when-not (== old new)
    (if (< old new)
      (println "Increase")
      (println "Decrease"))))

(add-watch counter :example counter-observer)

(swap! counter inc) Changing the atom automatically
calls the observer function

Like listener
We just write code to

React to event
Register for updates
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Listener - Basic Steps
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Subject changes
You write code to trigger notify to observers

Observer
Get notified that subject changed

You write code to react to the change
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React-Clojure Example
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(def click-count (atom 0))

(defn home-page []
  [:div [:h2 "Click Example"]
   [clicker]
   [stateful-with-atom] ])

(defn stateful-with-atom []
  [:div "Number of clicks " @click-count])

(defn clicker []
  [:div {:on-click #(swap! click-count inc)}
   "Click on me"])
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React-Clojure - Basic Steps
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Subject changes
You write code to trigger notify to observers

Observer
Get notified that subject changed

You write code to react to the change
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Basic Idea of Reactive Programming
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When you change the value of a variable

All uses of that variable are automatically updated

Reduces observer pattern to just using a variable
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Common Example - Spreadsheets
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=$A$1 + $B$1
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Reactive Programming
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Programming paradigm oriented around data flows and the propagation of change

This means that it should be possible to express static or dynamic data 
flows with ease in the programming languages used, and that the 
underlying execution model will automatically propagate changes through 
the data flow

Wikipedia

General programming but often used in
GUI
Networking
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b = 1
c = 2
a = b + c
b = 3

what is a?

Java

let $A$1 = 1
let $B$1 = 2
let $C$1 =$A$1 + $B$1

Now set $A$1 = 3

what is $C$1

Spreadsheet
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Reactive Programming - Types
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Imperative

Object-oriented

Functional

Examples

Elm - web
Rx 

Microsoft
RxJS
RxJava (Netflix port of RxJS)

ReactiveCocoa
Objective-C, Swift

React
Facebook

Thursday, November 5, 15



Functional Reactive Programming (FRP)
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1997 - Elliott & Hudak 
Fran - reactive animatons

FRP is about handling time-varying values like they were regular values.

FRP is a declarative way of modeling systems that respond to input over time. 
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Higher Order FRP
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Elliott & Hudak’s work

Time is a first-class citizen

Modeled time as continuous

Synchronous

Has some practical limitations
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First-Order FRP
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Elm - http://elm-lang.org

jump : Keys -> Model -> Model
jump keys mario =
  if keys.y > 0 && mario.vy == 0
    then { mario | vy <- 6.0 }
    else mario

the best of functional programming in your browser

Event driven
Synchronous or Asynchronous
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Asynchronous Data Flow
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Reactive Extension (Rx)
RxJS
RxJava (Netflix)

ReactiveCocoa
Bacon.js

Event Driven

Asynchronous only

Netflix use RxJava, RxJS
Network traffic

Reactive API backend services
GUI
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RxJava & Clojure
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Clojure Reactive Programming
Borges, March 2015

Covers Rx programming in Clojure

On-line from SDSU library

Chapter 1 - history of FRP
Source for previous slides
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React - Facebook
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React - Javascript
First release 2013

React Native - iOS & Android

One-way data flow

Virtual DOM

Server-side rendering (JavaScript isomorphism)
Facebook, Netflix, PayPal
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React & Clojure
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Om
First release on Github Jan 2014
Om.next - coming soon

Reagent
Simpler than Om
First release Dec 2013

Quiescent
First release Feb 2014
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Reagent Resources
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https://github.com/reagent-project/reagent
Github repository

http://reagent-project.github.io/
Short tutorial

https://github.com/reagent-project/reagent-cookbook
Examples

Thursday, November 5, 15



To Start a Reagent Project
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lein new reagent projectname
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Live Development Updates 
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lein figwheel

Figwheel

Devcard

lein figwheel devcards
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