
CS 696 Functional Programming and Design
Fall Semester, 2015

Doc 19 Reagent Examples, Background
Nov 12, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, November 12, 15

Blog & Video

2

http://timothypratley.blogspot.com/2015/11/curious-about-clojurescript-but-not.html

Curious about ClojureScript, but not sure how to use it

You task for Tuesday:
Implement Tick-tack-toe from the video

Thursday, November 12, 15

ClojureScript

3

No
Refs
Agents

def - creates Javascript variable

Google Closure library - optimize

Numbers
integer & floating point only
Equality from Javascript

(= 0.0 0) => true

:private - not enforced
:const - can not redefine

fn
no runtime check for arity

Most but not all collection fns are implemented

Almost all Seq library functions are
available in ClojureScript

Foo/bar always means that
Foo is a namespace

To access JS object properties
use a leading hyphen

.-target .-value

Thursday, November 12, 15

4

Some Examples

Thursday, November 12, 15

Set Up

5

(ns firstreagent.core
 (:require [reagent.core :as reagent :refer [atom]]
 [reagent.session :as session]
 [secretary.core :as secretary :include-macros true]
 [goog.events :as events]
 [goog.history.EventType :as EventType]
 [firstreagent.events :as e])
 (:import goog.History))

(secretary/defroute "/events" []
 (session/put! :current-page #'e/main))

In core

Thursday, November 12, 15

6

(ns firstreagent.events
 (:require [reagent.core :as r]))

(defn atom-input [value]
 [:input {:type "text"
 :value @value
 :on-change (fn [event] (reset! value (-> event .-target .-value)))}])

(defn main []
 (let [val (r/atom "foo")]
 (fn []
 [:div
 [:p "The value is now: " @val]
 [:p "Change it here: " [atom-input val]]])))

Thursday, November 12, 15

7

[:input {:type "text"
 :value @value
 :on-change (fn [event] (reset! value (-> event .-target .-value)))}]

<input on-change= "firstreagent.repl$eval13805$fn__13806@3c5b5bae"
type="text"
value="cat" />

Thursday, November 12, 15

All Three Run

8

[:input {:type "text"
 :value @value
 :on-change (fn [event] (reset! value (-> event .-target .-value)))}]

[:input {:type "text"
 :value @value
 :on-change (fn [] (reset! value “Cat”))}]

[:input {:type "text"
 :value @value
 :on-change (fn [event foo] (reset! value foo))}]

Thursday, November 12, 15

The Correct handler is Called

9

(def value (r/atom "foo"))

(defn handler
 ([] (reset! value "None"))
 ([event] (reset! value "One"))
 ([event foo] (reset! value "Two"))
)

(defn atom-input [value]
 [:input {:type "text"
 :value @value
 :on-change handler}])

(defn main []
 (fn []
 [:div
 [:p "The value is now: " @value]
 [:p "Change it here: " [atom-input value]]]))

Thursday, November 12, 15

Some DOM Events

10

Mouse Events

onclick
oncontextmenu
ondblclick
onmousedown
onmouseenter
onmouseleave
onmousemove
onmouseover
onmouseout
onmouseup

onkeydown
onkeypress
onkeyup

Keyboard Events

onblur
onchange
onfocus
onfocusin
onfocusout
oninput
oninvalid
onreset
onsearch
onselect
onsubmit

Form Events

http://www.w3schools.com/jsref/dom_obj_event.asp

Lot more at

Thursday, November 12, 15

DOM -> Reagent event names

11

onchange -> on-change

onmousemove -> on-mouse-move

Thursday, November 12, 15

DOM Event Objects

12

Properties

bubbles
cancelable
currentTarget
defaultPrevented
eventPhase
isTrusted
target
timeStamp
type
view

Thursday, November 12, 15

Bubbling

13

<div class="d1">
 <div class="d2">
 <div class="d3">
 </div>
 </div>
</div>

If an event occurs in d3

It is sent to the element d3

Then to element d2

Then to elment d1

To stop bubbling

event.stopPropagation() ;; All modern browsers except IE

event.cancelBubble = true ;; IE

Thursday, November 12, 15

MouseEvent & KeyEvent Objects

14

altKey
button
buttons
clientX
clientY
ctrlKey
detail
metaKey
relatedTarget
screenX
screenY
shiftKey
which

MouseEvent Properties

altKey
ctrlKey
charCode
key
keyCode
metaKey
shiftKey
which

KeyEvent Properties

Thursday, November 12, 15

More Dom Events

15

http://www.w3schools.com/jsref/dom_obj_event.asp

List, tutorial

http://quirksmode.org/dom/events/index.html

Browser compatibility

Thursday, November 12, 15

Second Example

16

(ns firstreagent.core
 (:require [reagent.core :as reagent :refer [atom]]
 [reagent.session :as session]
 [secretary.core :as secretary :include-macros true]
 [goog.events :as events]
 [goog.history.EventType :as EventType]
 [firstreagent.events :as e])
 (:import goog.History))

(secretary/defroute "/events" []
 (session/put! :current-page #'e/main))

In core

Thursday, November 12, 15

17

(ns firstreagent.events
 (:require [reagent.core :as r]))

(defn main []
 (let [value (r/atom {:x "none" :y "none"})]
 (fn []
 [:div {:on-mouse-move #(reset! value {:x (.-clientX %) :y (.-clientY %)})}
 [:p "X: " (:x @value) " Y: " (:y @value)]
 [:p "Move the mouse between here"]
 (repeat 3 [:br])
 [:p "and here"]])))

Thursday, November 12, 15

Undo

18

Thursday, November 12, 15

Undo

19

(def location (r/atom {:x "none" :y "none"}))

(def undo-list (r/atom nil))

(defn undo []
 (let [undos @undo-list]
 (when-let [old (first undos)]
 (reset! location old)
 (reset! undo-list (rest undos)))))

(defn undo-button []
 (let [n (count @undo-list)]
 [:input {:type "button" :on-click undo
 :disabled (zero? n)
 :value (str "Undo (" n ")")}]))

Thursday, November 12, 15

20

(defn track-mouse
 []
 [:div {:on-mouse-move #(reset! location {:x (.-clientX %) :y (.-clientY %)})}
 [:p "X: " (:x @location) " Y: " (:y @location)]
 [:p "Move the mouse between here"]
 (repeat 5 [:br])
 [:p "and here"]])

(defn main []
 (add-watch location ::undo-watcher
 (fn [_ _ old-state _]
 (swap! undo-list conj old-state)))
 [:div
 [undo-button]
 [track-mouse]]
)

Thursday, November 12, 15

print

21

In clojurescript print output will appear in the browser’s JavaScript console

(defn main []
 (let [value (r/atom {:x "none" :y "none"})]
 (fn []
 [:div {:on-mouse-move #(reset! value {:x (.-clientX %) :y (.-clientY %)})}
 [:p "X: " (:x @value) " Y: " (:y @value)]
 [:p "Move the mouse between here"]
 (repeat 3 [:br])
 (print "this is a test")
 [:p "and here"]])))

Thursday, November 12, 15

In Chrome

22

Thursday, November 12, 15

The Console

23

Thursday, November 12, 15

24

Some Details

Thursday, November 12, 15

Core of a Component

25

Render function

Input some data

Returns Hiccup vector that will be converted to HTML

Thursday, November 12, 15

Source https://github.com/Day8/re-frame/wiki/Creating-Reagent-Components

Three Ways to Create a Component

26

Render function
Form-1 component

Function that returns a render function
Form-2 component

Map of functions, one of which is the render function
Form-3 component

Thursday, November 12, 15

Render function - Form-1 Reagent Component

27

(defn greet
 [name] ;; data coming in is a string
 [:div "Hello " name])

(defn wrong-component
 [name]
 [[:div "Hello"] [:div name]])

(defn right-component
 [name]
 [:div
 [:div "Hello"]
 [:div name]])

Thursday, November 12, 15

Form-2 Reagent Component

28

(defn timer-component []
 (let [seconds-elapsed (reagent/atom 0)] ;; setup, and local state
 (fn [] ;; inner, render function is returned
 (js/setTimeout #(swap! seconds-elapsed inc) 1000)
 [:div "Seconds Elapsed: " @seconds-elapsed])))

timer-component is called once per component instance

The render function it returns will potentially be called many, many times

Function that returns a render function

Thursday, November 12, 15

Rookie mistake

29

(defn outer
 [a b c] ;; <--- parameters
 ;;
 (fn [a b c] ;; <--- forgetting to repeat them, is a rookie mistake
 [:div
 (str a b c)]))

Explain why

Thursday, November 12, 15

30

React Component

Thursday, November 12, 15

React Component - Relevant Parts

31

Data
props (properties)

Arguments/parameters

state

Functions
render (required)
getInitialState
getDefualtProps

We will not see these two

render function called when props or state change

create-class
Constructor

Thursday, November 12, 15

React Component Lifecycle Methods

32

componentWillMount
Called once

componentDidMount
Called once

componentWillReceiveProps
Called when receiving new props

shouldComponentUpdate
Return false to cancel update

componentWillUpdate
Called before update

componentDidUpdate
Called after update

componentWillUnmount
Thursday, November 12, 15

Form-3 Reagent Component

33

Map of functions
render function
Some React component lifecyle methods

Rarely needed

(defn my-component
 [x y z]
 (let [some (local but shared state) ;; <-- closed over by lifecycle fns
 can (go here)]
 (reagent/create-class ;; <-- expects a map of functions
 {:component-did-mount ;; the name of a lifecycle function
 #(println "component-did-mount") ;; your implementation

 :component-will-mount ;; the name of a lifecycle function
 #(println "component-will-mount") ;; your implementation

 ;; other lifecycle funcs can go in here

 :display-name "my-component" ;; for more helpful warnings & errors

 :reagent-render ;; Note: is not :render
 (fn [x y z] ;; remember to repeat parameters
 [:div (str x " " y " " z)]))}))

Thursday, November 12, 15

34

When Do Components Update

Thursday, November 12, 15

Reagent Component are Reactive

35

Each Component has a render function

Render function turns input data into hiccup (HTML)

Render functions are rerun when their input data changes, producing new hiccup

New hiccup is "interpreted" by Reagent and ultimately results in new HTML

Thursday, November 12, 15

Source https://github.com/Day8/re-frame/wiki/When-do-components-update%3F view on 11/11/15

Two Types of Input

36

props
ratoms - Reagent atoms

Thursday, November 12, 15

Props

37

(defn greet
 [name] ;; name is a string
 [:div "Hello " name])

Name is a prop (property)

greet will be called each time name changes

Thursday, November 12, 15

38

(defn greet-family
 []
 [:div
 [greet "Dad"]
 [greet (str "Bro-" (rand-int 10))]])

(defn greet
 [name]
 [:div "Hello " name])

Each time greet-family is rendered

Is subcomponents are checked

If there props have changed
rerender them

[greet "Dad"] - rendered once

[greet (str "Bro-" (rand-int 10))]
9 times out of ten rerendered when parent is rerendered

Thursday, November 12, 15

Ratoms

39

(def name (reagent.ratom/atom "Bear"))

(defn ask-for-forgiveness
 [] ;; <--- no props
 [:div "Please " @name " with me"])

ask-for-forgiveness
rerendered when @name changes

Thursday, November 12, 15

40

(defn parent
 []
 (let [counter (reagent.ratom/atom 1)] ;; the render closes over this state
 (fn parent-renderer
 []
 [:div
 [more-button counter] ;; no @ on counter
 [greet-number @counter]])))

What happens when button is
pressed?parent-renderer is rerun

greet-number’s prop has changed
so rerun

more-button is not rerun

Thursday, November 12, 15

41

(defn greet-number
 "I say hello to an integer"
 [num] ;; an integer
 [:div (str "Hello #" num)])

(defn more-button
 [counter] ;; a ratom
 [:div {:class "button-class"
 :on-click #(swap! counter inc)} ;; increment the int value in counter
 "More"])

(defn parent
 []
 (let [counter (reagent.ratom/atom 1)] ;; the render closes over this state
 (fn parent-renderer
 []
 [:div
 [more-button counter] ;; no @ on counter
 [greet-number @counter]])))

What happens when button is
pressed?

Thursday, November 12, 15

When are things Equal?

42

(def x1 {:a 42 :b 45})
(def x2 {:a 42 :b 45})

(= x1 x2) ;; => true

(identical? x1 x2) ;; => false

=
are values same
Java equals

identical?
point to the same structure
Java ==

=
use to compare props

indentical?
Used to compare value inside ratoms

Thursday, November 12, 15

Lifecycle Functions

43

prop changes trigger all lifecycle methods

ratoms changes do not trigger lifecycle methods

Thursday, November 12, 15

