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Blog & Video
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http://timothypratley.blogspot.com/2015/11/curious-about-clojurescript-but-not.html

Curious about ClojureScript, but not sure how to use it

You task for Tuesday:
Implement Tick-tack-toe from the video
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ClojureScript
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No
Refs
Agents

def - creates Javascript variable

Google Closure library - optimize

Numbers
integer & floating point only
Equality from Javascript

(= 0.0 0)  => true

:private - not enforced
:const - can not redefine

fn
no runtime check for arity

Most but not all collection fns are implemented

Almost all Seq library functions are 
available in ClojureScript

Foo/bar always means that 
Foo is a namespace

To access JS object properties
use a leading hyphen

.-target .-value
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Some Examples
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Set Up
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(ns firstreagent.core
    (:require [reagent.core :as reagent :refer [atom]]
              [reagent.session :as session]
              [secretary.core :as secretary :include-macros true]
              [goog.events :as events]
              [goog.history.EventType :as EventType]
              [firstreagent.events :as e])
    (:import goog.History))

(secretary/defroute "/events" []
                    (session/put! :current-page #'e/main))

In core
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(ns firstreagent.events
  (:require  [reagent.core :as r] ))

(defn atom-input [value]
  [:input {:type "text"
           :value @value
           :on-change (fn [event] (reset! value (-> event .-target .-value)))}])

(defn main []
  (let [val (r/atom "foo")]
    (fn []
      [:div
       [:p "The value is now: " @val]
       [:p "Change it here: " [atom-input val]]])))
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[:input {:type "text"
           :value @value
           :on-change (fn [event] (reset! value (-> event .-target .-value)))}]

<input on-change= "firstreagent.repl$eval13805$fn__13806@3c5b5bae" 
type="text" 
value="cat" />
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All Three Run
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[:input {:type "text"
           :value @value
           :on-change (fn [event] (reset! value (-> event .-target .-value)))}]

[:input {:type "text"
           :value @value
           :on-change (fn [] (reset! value “Cat”))}]

[:input {:type "text"
           :value @value
           :on-change (fn [event foo] (reset! value foo))}]

Thursday, November 12, 15



The Correct handler is Called
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(def value (r/atom "foo"))

(defn handler
  ([] (reset! value "None"))
  ([event] (reset! value "One"))
  ([event foo] (reset! value "Two"))
  )

(defn atom-input [value]
  [:input {:type "text"
           :value @value
           :on-change handler}])

(defn main []
   (fn []
      [:div
       [:p "The value is now: " @value]
       [:p "Change it here: " [atom-input value]]]))
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Some DOM Events
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Mouse Events

onclick
oncontextmenu
ondblclick
onmousedown
onmouseenter
onmouseleave
onmousemove
onmouseover
onmouseout 
onmouseup

onkeydown
onkeypress
onkeyup 

Keyboard Events

onblur 
onchange
onfocus
onfocusin
onfocusout
oninput
oninvalid
onreset
onsearch
onselect 
onsubmit 

Form Events

http://www.w3schools.com/jsref/dom_obj_event.asp

Lot more at
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DOM -> Reagent event names
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onchange -> on-change

onmousemove -> on-mouse-move
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DOM Event Objects
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Properties

bubbles
cancelable
currentTarget
defaultPrevented
eventPhase
isTrusted
target
timeStamp
type
view
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Bubbling
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<div class="d1">
    <div class="d2">
        <div class="d3"> 
        </div>
    </div>
</div>

If an event occurs  in d3

It is sent to the element d3

Then to element d2

Then to elment d1

To stop bubbling

event.stopPropagation()   ;;   All modern browsers except IE

event.cancelBubble = true ;;  IE
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MouseEvent & KeyEvent Objects
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altKey 
button 
buttons
clientX 
clientY
ctrlKey
detail
metaKey
relatedTarget
screenX 
screenY
shiftKey 
which

MouseEvent Properties

altKey 
ctrlKey
charCode
key
keyCode
metaKey
shiftKey 
which

KeyEvent Properties
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More Dom Events

15

http://www.w3schools.com/jsref/dom_obj_event.asp

List, tutorial

http://quirksmode.org/dom/events/index.html

Browser compatibility
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Second Example
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(ns firstreagent.core
    (:require [reagent.core :as reagent :refer [atom]]
              [reagent.session :as session]
              [secretary.core :as secretary :include-macros true]
              [goog.events :as events]
              [goog.history.EventType :as EventType]
              [firstreagent.events :as e])
    (:import goog.History))

(secretary/defroute "/events" []
                    (session/put! :current-page #'e/main))

In core
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(ns firstreagent.events
  (:require [reagent.core :as r]))

(defn main []
  (let [value (r/atom {:x "none" :y "none"})]
    (fn []
      [:div {:on-mouse-move #(reset! value {:x (.-clientX %) :y (.-clientY %)})}
       [:p "X:  " (:x @value) " Y: " (:y @value)]
       [:p "Move the mouse between here"]
      (repeat 3 [:br])
       [:p "and here"]])))
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Undo
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Undo 

19

(def location (r/atom {:x "none" :y "none"}))

(def undo-list (r/atom nil))

(defn undo []
  (let [undos @undo-list]
    (when-let [old (first undos)]
      (reset! location old)
      (reset! undo-list (rest undos)))))

(defn undo-button []
  (let [n (count @undo-list)]
    [:input {:type "button" :on-click undo
             :disabled (zero? n)
             :value (str "Undo (" n ")")}]))
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(defn track-mouse
  []
  [:div {:on-mouse-move #(reset! location {:x (.-clientX %) :y (.-clientY %)})}
   [:p "X:  " (:x @location) " Y: " (:y @location)]
   [:p "Move the mouse between here"]
   (repeat 5 [:br])
   [:p "and here"]])

(defn main []
  (add-watch location ::undo-watcher
             (fn [_ _ old-state _]
               (swap! undo-list conj old-state)))
  [:div
   [undo-button]
   [track-mouse]]
 )
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print
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In clojurescript print output will appear in the browser’s JavaScript console

(defn main []
  (let [value (r/atom {:x "none" :y "none"})]
    (fn []
      [:div {:on-mouse-move #(reset! value {:x (.-clientX %) :y (.-clientY %)})}
       [:p "X:  " (:x @value) " Y: " (:y @value)]
       [:p "Move the mouse between here"]
       (repeat 3 [:br])
       (print "this is a test")
       [:p "and here"]])))
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In Chrome
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The Console
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Some Details
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Core of a Component
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Render function

Input some data

Returns Hiccup vector that will be converted to HTML
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Source https://github.com/Day8/re-frame/wiki/Creating-Reagent-Components



Three Ways to Create a Component
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Render function
Form-1 component

Function that returns a render function
Form-2 component

Map of functions, one of which is the render function
Form-3 component
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Render function - Form-1 Reagent Component
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(defn greet
   [name]                    ;; data coming in is a string
   [:div "Hello " name])

(defn wrong-component
   [name]              
   [[:div "Hello"] [:div name]])   

(defn right-component
   [name]              
   [:div 
     [:div "Hello"] 
     [:div name]])
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Form-2 Reagent Component
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(defn timer-component []
  (let [seconds-elapsed (reagent/atom 0)]     ;; setup, and local state
    (fn []        ;; inner, render function is returned
      (js/setTimeout #(swap! seconds-elapsed inc) 1000)
      [:div "Seconds Elapsed: " @seconds-elapsed])))

timer-component is called once per component instance

The render function it returns will potentially be called many, many times

Function that returns a render function
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Rookie mistake
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(defn outer 
  [a b c]            ;; <--- parameters
  ;;  ....
  (fn [a b c]        ;; <--- forgetting to repeat them, is a rookie mistake
    [:div
      (str a b c)]))

Explain why
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React Component
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React Component - Relevant Parts
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Data
props (properties)

Arguments/parameters

state

Functions
render (required)
getInitialState 
getDefualtProps

We will not see these two

render function called when props or state change

create-class
Constructor
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React Component Lifecycle Methods
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componentWillMount
Called once

componentDidMount
Called once

componentWillReceiveProps
Called when receiving new props

shouldComponentUpdate
Return false to cancel update

componentWillUpdate
Called before update

componentDidUpdate
Called after update

componentWillUnmount 
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Form-3 Reagent Component
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Map of functions
render function
Some React component lifecyle methods

Rarely needed

(defn my-component
  [x y z]  
  (let [some (local but shared state)      ;; <-- closed over by lifecycle fns
        can  (go here)]   
     (reagent/create-class                 ;; <-- expects a map of functions 
       {:component-did-mount               ;; the name of a lifecycle function
        #(println "component-did-mount")   ;; your implementation

        :component-will-mount              ;; the name of a lifecycle function
        #(println "component-will-mount")  ;; your implementation

        ;; other lifecycle funcs can go in here

        :display-name  "my-component"  ;; for more helpful warnings & errors

        :reagent-render        ;; Note:  is not :render
         (fn [x y z]           ;; remember to repeat parameters
            [:div (str x " " y " " z)]))}))
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When Do Components Update
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Reagent Component are Reactive
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Each Component has a render function

Render function turns input data into hiccup (HTML)

Render functions are rerun when their input data changes, producing new hiccup

New hiccup is "interpreted" by Reagent and ultimately results in new HTML
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Source https://github.com/Day8/re-frame/wiki/When-do-components-update%3F view on 11/11/15



Two Types of Input 
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props
ratoms - Reagent atoms
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Props
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(defn greet
  [name]          ;; name is a string            
  [:div "Hello " name])

Name is a prop (property)

greet will be called each time name changes
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(defn greet-family
  [] 
  [:div 
    [greet "Dad"]
    [greet (str "Bro-" (rand-int 10))]])

(defn greet
  [name]            
  [:div "Hello " name])

Each time greet-family is rendered

Is subcomponents are checked

If there props have changed 
rerender them

[greet "Dad"] - rendered once

[greet (str "Bro-" (rand-int 10))]
9 times out of ten rerendered when parent is rerendered
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Ratoms
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(def name  (reagent.ratom/atom "Bear"))

(defn ask-for-forgiveness
  []           ;; <--- no props     
  [:div "Please " @name " with me"]) 

ask-for-forgiveness
rerendered when @name changes
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(defn parent
  [] 
  (let [counter  (reagent.ratom/atom 1)]    ;; the render closes over this state
    (fn  parent-renderer 
      []
      [:div 
        [more-button counter]            ;; no @ on counter
        [greet-number @counter]])))

What happens when button is 
pressed?parent-renderer is rerun

greet-number’s prop has changed
so rerun

more-button is not rerun
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(defn greet-number
  "I say hello to an integer"
  [num]                             ;; an integer
  [:div (str "Hello #" num)])

(defn more-button
  [counter]                             ;; a ratom
  [:div  {:class "button-class"
         :on-click  #(swap! counter inc)}   ;; increment the int value in counter
         "More"])    

(defn parent
  [] 
  (let [counter  (reagent.ratom/atom 1)]    ;; the render closes over this state
    (fn  parent-renderer 
      []
      [:div 
        [more-button counter]            ;; no @ on counter
        [greet-number @counter]])))

What happens when button is 
pressed?
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When are things Equal?
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(def x1  {:a 42  :b 45})
(def x2  {:a 42  :b 45}) 

(= x1 x2)                   ;; =>  true          

(identical? x1 x2)      ;; => false 

=
are values same
Java equals

identical?
point to the same structure
Java ==

=
use to compare props

indentical?
Used to compare value inside ratoms
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Lifecycle Functions
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prop changes trigger all lifecycle methods

ratoms changes do not trigger lifecycle methods
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