
CS 696 Functional Programming and Design
Fall Semester, 2015

Doc 21 MVC, Re-frame
Nov 17, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, November 17, 15

Norris Number

2

Average amount of code an untrained programmer can write
before they hit a wall

~1,500 lines

Beyond that the code becomes so tangled they cannot debug
or modify it without herculean effort

http://www.teamten.com/lawrence/writings/norris-numbers.html

Tuesday, November 17, 15

Scale Changes Everything

3

Tuesday, November 17, 15

Architecture

4

What are the major parts of the program

What are the resposiblities of each part

How to the parts interact

Tuesday, November 17, 15

Model-View-Controller (MVC)

5

Started in Smalltalk

Model - data for the app

View - Displays model in the UI

Controller
Takes user input
Manipulates model
Cause view to update appropriately
Talks to both model & view

Tuesday, November 17, 15

Image from https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller, Viewed 11/16/15

Model-View-Controller

6

Separation of presentation from Model
Model and View are different concerns
View changes at different rate
Multiple ways of presenting same data
Easier to test model logic

Separation of view & controller
Smalltalk had little separation between
In desktop frameworks each view usually has one controller
Martin Fowler

This seperation not as important

Tuesday, November 17, 15

Web & MVC

7

Web frameworks commonly use MVC

Each framework as slightly different definition of MVC

Controller
Handling requests & responses
Setting up database connections
URL config file

Model
Database + code that uses the database

View
HTML page & code that renders templates

Django

Tuesday, November 17, 15

Reagent & re-frame

8

Reagent - View

re-frame
Architecture for app using Reagent

Tuesday, November 17, 15

re-frame

9

Big ratom

Immutable data

Pure functions

One-way data flow

Tuesday, November 17, 15

Big Ratom

10

Place all state in one ratom

(def app-db (reagent/atom {}))

Tuesday, November 17, 15

Benefits of Big Ratom

11

Single source of truth
Now synchronization issues between widgets

Save & undo

Tuesday, November 17, 15

Issues with Big Ratom

12

What is the structure of the ratom?

Widget only needs small part of ratom

Tuesday, November 17, 15

13

Structure verse Freedom

Tuesday, November 17, 15

Structure vs Freedom

14

Structure

Types
Java
Swift

Freedom

Types
Clojure
Ruby

Process
Waterfall Model

Process
Test-Drive Design
Agile methods

Structure builds in discipline for you

Freedom requires self discipline

Data
Classes

Data
Maps

Tuesday, November 17, 15

Clojure & Types

15

Naming convention

(defn foo [s xs line-map] ...)

Informal documentation

(defn foo
“line-map {:start {:x 12 :y 0} :end {:x 18 :y 202}}”
[s xs line-map] ...)

Tuesday, November 17, 15

Clojure & Types

16

Records

(defrecord Point [x y])

(defrecord Line [^Point start ^Point end])

(def a (Line. (Point. 12 0) (Point. 18 202)))

(:start a)
(:end a)

(defn foo
 [^Line line]
 )

Tuesday, November 17, 15

Clojure & Types

17

Schema

Prismatic https://github.com/Prismatic/schema
Define schema for your data

Validate data

Annotate function arguments & return values

Tuesday, November 17, 15

Prismatic Schema Use Cases

18

Documentation

Validate data usage in tests

Check data that from/to external sources
Files
Database
Network

Tuesday, November 17, 15

Prismatic Schema

19

(ns schema-examples
 (:require [schema.core :as s
 :include-macros true ;; cljs only
]))

Compound Types

Vectors

[s/Str] -> [“a” “2”]
[s/Int] -> [1 2 3]

Maps

{s/Str s/Num} -> {“a” 4 “b” 0}

{long {String double}} -> {1 {"2" 3.0 "4" 5.0}}

Basic Types

s/Any, s/Bool, s/Num, s/Keyword, s/Symbol, s/Int, and s/Str
String long double java.lang.Long etc

Tuesday, November 17, 15

Validate & check

20

(s/validate s/Num 42) 42

(s/validate s/Num "42") Exception
 Value does not match schema:
 (not (instance? java.lang.Number "42"))

(s/check s/Num 4) nil

(s/check s/Num "4") (not (instance? java.lang.Number "42"))

Tuesday, November 17, 15

Documentation

21

(def point-schema
 {:x s/Num :y s/Num})

(def line-schema
 {:start point-schema
 :end point-schema})

(defn foo
“line is of type line-schema”

 [line]
 (-> line :start :x))

(foo {:start {:x 1 :y 10} :end {:x 20 }})

Tuesday, November 17, 15

Checking at Runtime

22

(def point-schema
 {:x s/Num :y s/Num})

(def line-schema
 {:start point-schema
 :end point-schema})

(defn foo
 [line]
 {:pre [(s/validate line-schema line)]
 :post [(s/validate s/Num %)] }
 (-> line :start :x))

(foo {:start {:x 1 :y 10} :end {:x 20 }})

Tuesday, November 17, 15

Selective Checks with with-fn-validation

23

(def point-schema
 {:x s/Num :y s/Num})

(def line-schema
 {:start point-schema
 :end point-schema})

(s/defn foo :- s/Num
 [line :- line-schema]
 (-> line :start :x))

(foo {:start {:x 1 :y 10} :end {:x 20 }}) ;; runs fine

(s/with-fn-validation
 (foo {:start {:x 1 :y 10} :end {:x 20 }})) ;; Throws an error

Tuesday, November 17, 15

Always-validate

24

(def point-schema
 {:x s/Num :y s/Num})

(def line-schema
 {:start point-schema
 :end point-schema})

(s/defn ^:always-validate foo :- s/Num
 [line :- line-schema]
 (-> line :start :x))

(foo {:start {:x 1 :y 10} :end {:x 20 }}) ;; Exception

Tuesday, November 17, 15

25

Back to reframe & Reagent

Tuesday, November 17, 15

Streams or Flows

26

Database
Stream of requests
Prevayler (http://prevayler.org)

Refactoring

Files
Mirror Worlds 1992, David Gelernter
Intellij
Smalltalk

Tuesday, November 17, 15

How Flow Happens In Reagent

27

ratom

reaction
Wraps a computation
returns a ratom holding the result of the computation
computation redone when input changes

Tuesday, November 17, 15

28

(reset! app-db {:a 0})

(ns firstreagent.reframe
 (:require-macros [reagent.ratom :refer [reaction]]) ;; reaction is a macro
 (:require [reagent.core :as reagent]))

(def app-db (reagent/atom {:a 1}))

(def ratom2 (reaction {:b (:a @app-db)}))

(def ratom3 (reaction (condp = (:b @ratom2)
 0 "World"
 1 "Hello")))

(println @ratom2) ;; ==> {:b 1}
(println @ratom3) ;; ==> "Hello"

(println @ratom2) ;; ==> {:b 0}
(println @ratom3) ;; ==> “World”

Tuesday, November 17, 15

How does reaction work

29

reaction is a macro

(def ratom2 (reaction {:b (:a @app-db)}))

So it know about the atom

Can register a watcher on the atom

Bit more complex than that

Tuesday, November 17, 15

How React Works

30

(defn greet
 [name]
 [:div "Hello " @name])

(def n (reagent/atom "re-frame"))

(def hiccup-ratom (reaction (greet n)))

(println @hiccup-ratom) ;; ==> [:div "Hello " "re-frame"]

(reset! n "blah") ;; n changes

(println @hiccup-ratom) ;; ==> [:div "Hello " "blah"]

Tuesday, November 17, 15

31

(ns firstreagent.events
 (:require [reagent.core :as r]))

(defn atom-input [value]
 [:input {:type "text"
 :value @value
 :on-change (fn [event] (reset! value (-> event .-target .-value)))}])

(defn main []
 (let [val (r/atom "foo")]
 (fn []
 [:div
 [:p "The value is now: " @val]
 [:p "Change it here: " [atom-input val]]])))

Tuesday, November 17, 15

How does this Work?

32

(defn atom-input [value]
 [:input {:type "text"
 :value @value
 :on-change (fn [event] (reset! value (-> event .-target .-value)))}])

(defn main []
 (let [val (r/atom "foo")]
 (fn []
 [:div
 [:p "The value is now: " @val]
 [:p "Change it here: " [atom-input val]]])))

Your Hiccup vectors are wrapped in a reaction

Tuesday, November 17, 15

Data Flow

33

app-db (big ratom)

components

Hiccup

Reagent

VDOM

React

DOM

Tuesday, November 17, 15

Issues of Big Ratom

34

What is the structure of the ratom?

Widget only needs small part of ratom

Tuesday, November 17, 15

35

Reagent Cursors
reframe Subscriptions

Tuesday, November 17, 15

Reagent Cursor

36

(cursor ratom [path])

Returns cursor on part of ratom
Acts like a ratom

Tuesday, November 17, 15

Example - Changing Cursor changes ratom

37

(def sample (reagent/cursor app-db [:b 0]))
(print @sample) ;==> 1

(ns firstreagent.reframe
 (:require-macros [reagent.ratom :refer [reaction]]) ;; reaction is a macro
 (:require [reagent.core :as reagent]))

(def app-db (reagent/atom {:a 1 :b [1 2 3]}))

(print @app-db) ;==> {:a 1, :b [1 2 3]}

(reset! sample 9)

(print @sample) ;==> 9
(print @app-db) ;==> {:a 1, :b [9 2 3]}

Tuesday, November 17, 15

Example - Changing ratom changes cursor

38

(def app-db (reagent/atom {:a 1 :b [1 2 3]}))

(print @app-db) ;==> {:a 1, :b [1 2 3]}

(def sample (reagent/cursor app-db [:b 0]))

(print @sample) ;==> 1

(swap! app-db update-in [:b 0] inc)

(print @app-db) ;==> {:a 1, :b [2 2 3]}
(print @sample) ;==> 2

Tuesday, November 17, 15

Example

39

Tuesday, November 17, 15

Example

40

(defn cursor-parent []
 [:div
 [:p "Current state: " (pr-str @app-db)]
 [cursor-name-edit (reagent/cursor app-db [:name])]])

(def app-db (reagent/atom {:name
 {:first-name "John" :last-name "Smith"}}))

(defn input [prompt val]
 [:div
 prompt
 [:input {:value @val
 :on-change #(reset! val (.-target.value %))}]])

(defn cursor-name-edit [n]
 (let [{:keys [first-name last-name]} @n]
 [:div
 [:p "I'm editing " first-name " " last-name "."]

 [input "First name: " (reagent/cursor n [:first-name])]
 [input "Last name: " (reagent/cursor n [:last-name])]]))

Tuesday, November 17, 15

Cursor and Big Ratom

41

Cursors represent small part of the data in big ratom

Cursors only update when their part of big ratom change

Changes to other parts of big ratom do not affect a cursor

Tuesday, November 17, 15

42

Tuesday, November 17, 15

43

(def app-db (reagent/atom {:name
 {:first-name "John" :last-name "Smith"}}))

(def first-name (reagent/cursor app-db [:name :first-name]))

(defn display-count
 [value]
 (let [counter (atom 0)]
 (fn []
 (swap! counter inc)
 [:p value " " @counter])))

(defn input [prompt val]
 [:div
 prompt
 [:input {:value @val
 :on-change #(reset! val (.-target.value %))}]])

Tuesday, November 17, 15

44

(defn cursor-name-edit [n]
 (let [{:keys [first-name last-name]} @n]
 [:div
 [input "First name: " (reagent/cursor n [:first-name])]
 [input "Last name: " (reagent/cursor n [:last-name])]]))

(defn cursor-parent []
 [:div
 [:p "Current state: " (pr-str @app-db)]
 [display-count @first-name]
 [cursor-name-edit (reagent/cursor app-db [:name])]])

Tuesday, November 17, 15

Back to MVC

45

(def app-db (reagent/atom {:name
 {:first-name "John" :last-name "Smith"}}))

(def first-name (reagent/cursor app-db [:name :first-name]))
(def last-name (reagent/cursor app-db [:name :last-name]))

Model
Data
Reading & writing of data
Logic on the data

Big ratom & cursors
Model
Like database for app

Tuesday, November 17, 15

View

46

View - Displays model in the UI

Hiccup part of view

[:p "Current state: " (pr-str @app-db)]

(defn display-count
 [value]
 (let [counter (atom 0)]
 (fn []
 (swap! counter inc)
 [:p value " " @counter])))

(defn cursor-parent []
 [:div
 [:p "Current state: " (pr-str @app-db)]
 [display-count @first-name]
 [cursor-name-edit (reagent/cursor app-db [:name])]])

Tuesday, November 17, 15

Controller

47

(defn input [prompt val]
 [:div
 prompt
 [:input {:value @val
 :on-change #(reset! val (.-target.value %))}]])

Controller
Takes user input
Manipulates model
Cause view to update appropriately
Talks to both model & view

Tuesday, November 17, 15

MVC, Big Ratom & Cursors

48

View & Controller are mixed together

Separation of view & controller
Smalltalk had little separation between
In desktop frameworks each view usually has one controller
Martin Fowler

This seperation not as important

Tuesday, November 17, 15

reframe Dislikes Cursor

49

Two way flow

Mixes view & controller

Can not create different views on data

Tuesday, November 17, 15

Scale Changes Everything

50

Tuesday, November 17, 15

