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Norris Number

2

Average amount of code an untrained programmer can write 
before they hit a wall

~1,500 lines 

Beyond that the code becomes so tangled they cannot debug 
or modify it without herculean effort

http://www.teamten.com/lawrence/writings/norris-numbers.html
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Scale Changes Everything

3

Tuesday, November 17, 15



Architecture

4

What are the major parts of the program

What are the resposiblities of each part

How to the parts interact 
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Model-View-Controller (MVC)

5

Started in Smalltalk

Model - data for the app

View - Displays model in the UI

Controller
Takes user input
Manipulates model
Cause view to update appropriately
Talks to both model & view
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Model-View-Controller

6

Separation of presentation from Model
Model and View are different concerns
View changes at different rate
Multiple ways of presenting same data
Easier to test model logic

Separation of view & controller
Smalltalk had little separation between
In desktop frameworks each view usually has one controller
Martin Fowler 

This seperation not as important 
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Web & MVC

7

Web frameworks commonly use MVC

Each framework as slightly different definition of MVC

Controller
Handling requests & responses
Setting up database connections
URL config file

Model
Database + code that uses the database

View
HTML page & code that renders templates

Django
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Reagent & re-frame

8

Reagent - View

re-frame
Architecture for app using Reagent
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re-frame

9

Big ratom

Immutable data

Pure functions

One-way data flow
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Big Ratom

10

Place all state in one ratom

(def app-db  (reagent/atom {}))
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Benefits of Big Ratom

11

Single source of truth
Now synchronization issues between widgets

Save & undo 
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Issues with Big Ratom

12

What is the structure of the ratom?

Widget only needs small part of ratom
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Structure verse Freedom
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Structure vs Freedom

14

Structure

Types
Java
Swift

Freedom

Types
Clojure
Ruby

Process
Waterfall Model

Process
Test-Drive Design
Agile methods

Structure builds in discipline for you

Freedom requires self discipline

Data
Classes

Data
Maps
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Clojure & Types

15

Naming convention

(defn foo [s xs line-map] ...)

Informal documentation

(defn foo 
“line-map {:start {:x 12 :y 0} :end {:x 18 :y 202}}”
[s xs line-map] ...)
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Clojure & Types

16

Records

(defrecord Point [x y])

(defrecord Line [^Point start ^Point end])

(def a (Line. (Point. 12 0) (Point. 18 202)))

(:start a)
(:end a)

(defn foo 
  [^Line line]
  ....)
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Clojure & Types

17

Schema

Prismatic https://github.com/Prismatic/schema
Define schema for your data

Validate data

Annotate function arguments & return values
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Prismatic Schema Use Cases

18

Documentation

Validate data usage in tests

Check data that from/to external sources
Files
Database
Network
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Prismatic Schema

19

(ns schema-examples
  (:require [schema.core :as s
             :include-macros true ;; cljs only
             ]))

Compound Types

Vectors

[s/Str]  -> [“a” “2”]
[s/Int]   -> [1 2 3]

Maps

{s/Str s/Num}  -> {“a” 4 “b” 0}

{long {String double}} -> {1 {"2" 3.0 "4" 5.0}}

Basic Types

s/Any, s/Bool, s/Num, s/Keyword, s/Symbol, s/Int, and s/Str
String long double java.lang.Long etc
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Validate & check

20

(s/validate s/Num 42)    42

(s/validate s/Num "42")   Exception 
          Value does not match schema: 
          (not (instance? java.lang.Number "42"))

(s/check s/Num 4)    nil

(s/check s/Num "4")    (not (instance? java.lang.Number "42"))
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Documentation

21

(def point-schema
      {:x s/Num :y s/Num})

(def line-schema
      {:start point-schema
       :end point-schema})

(defn foo
“line is of type line-schema”

      [line]
      (-> line :start :x))

(foo {:start {:x 1 :y 10} :end {:x 20 }})
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Checking at Runtime

22

(def point-schema
      {:x s/Num :y s/Num})

(def line-schema
      {:start point-schema
       :end point-schema})

(defn foo
      [line]
      {:pre [(s/validate line-schema line)]
       :post [(s/validate s/Num %)] }
      (-> line :start :x))

(foo {:start {:x 1 :y 10} :end {:x 20 }})
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Selective Checks with with-fn-validation

23

(def point-schema
      {:x s/Num :y s/Num})

(def line-schema
      {:start point-schema
       :end point-schema})

(s/defn foo :- s/Num
      [line :- line-schema]
      (-> line :start :x))

(foo {:start {:x 1 :y 10} :end {:x 20 }})   ;; runs fine

(s/with-fn-validation 
      (foo {:start {:x 1 :y 10} :end {:x 20 }})) ;; Throws an error
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Always-validate

24

(def point-schema
  {:x s/Num :y s/Num})

(def line-schema
  {:start point-schema
   :end point-schema})

(s/defn ^:always-validate foo :- s/Num
        [line :- line-schema]
      (-> line :start :x))

(foo {:start {:x 1 :y 10} :end {:x 20 }})   ;; Exception
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Back to reframe & Reagent
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Streams or Flows

26

Database 
Stream of requests
Prevayler (http://prevayler.org)

Refactoring

Files
Mirror Worlds 1992, David Gelernter
Intellij
Smalltalk
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How Flow Happens In Reagent

27

ratom

reaction
Wraps a computation
returns a ratom holding the result of the computation
computation redone when input changes
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(reset!  app-db  {:a 0}) 

(ns firstreagent.reframe
  (:require-macros [reagent.ratom :refer [reaction]])  ;; reaction is a macro
  (:require        [reagent.core  :as    reagent]))

(def app-db  (reagent/atom {:a 1}))

(def ratom2  (reaction {:b (:a @app-db)}))

(def ratom3  (reaction (condp = (:b @ratom2)  
                            0 "World"
                             1 "Hello")))

(println @ratom2)    ;; ==>  {:b 1}       
(println @ratom3)    ;; ==> "Hello"  

(println @ratom2)    ;; ==>  {:b 0} 
(println @ratom3)    ;; ==> “World”

Tuesday, November 17, 15



How does reaction work

29

reaction is a macro

(def ratom2  (reaction {:b (:a @app-db)}))

So it know about the atom

Can register a watcher on the atom

Bit more complex than that

Tuesday, November 17, 15



How React Works

30

(defn greet
  [name]               
  [:div "Hello "  @name]) 

(def n (reagent/atom "re-frame"))

(def hiccup-ratom  (reaction (greet n)))    

(println @hiccup-ratom)  ;; ==>  [:div "Hello " "re-frame"]

(reset! n "blah")            ;;    n changes

(println @hiccup-ratom) ;; ==>   [:div "Hello " "blah"]
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(ns firstreagent.events
  (:require  [reagent.core :as r] ))

(defn atom-input [value]
  [:input {:type "text"
           :value @value
           :on-change (fn [event] (reset! value (-> event .-target .-value)))}])

(defn main []
  (let [val (r/atom "foo")]
    (fn []
      [:div
       [:p "The value is now: " @val]
       [:p "Change it here: " [atom-input val]]])))
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How does this Work?

32

(defn atom-input [value]
  [:input {:type "text"
           :value @value
           :on-change (fn [event] (reset! value (-> event .-target .-value)))}])

(defn main []
  (let [val (r/atom "foo")]
    (fn []
      [:div
       [:p "The value is now: " @val]
       [:p "Change it here: " [atom-input val]]])))

Your Hiccup vectors are wrapped in a reaction
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Data Flow

33

app-db (big ratom)

components

Hiccup

Reagent

VDOM

React

DOM
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Issues of Big Ratom

34

What is the structure of the ratom?

Widget only needs small part of ratom
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Reagent Cursors
reframe Subscriptions
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Reagent Cursor

36

(cursor ratom [path])

Returns cursor on part of ratom
Acts like a ratom
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Example - Changing Cursor changes ratom

37

(def sample (reagent/cursor app-db [:b 0]))
(print @sample)        ;==> 1

(ns firstreagent.reframe
  (:require-macros [reagent.ratom :refer [reaction]])  ;; reaction is a macro
  (:require        [reagent.core  :as    reagent]))

(def app-db  (reagent/atom {:a 1 :b [1 2 3]}))     
      
(print @app-db)        ;==> {:a 1, :b [1 2 3]}

(reset! sample 9)

(print @sample)        ;==> 9
(print @app-db)        ;==> {:a 1, :b [9 2 3]}
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Example - Changing ratom changes cursor

38

(def app-db  (reagent/atom {:a 1 :b [1 2 3]}))

(print @app-db)       ;==> {:a 1, :b [1 2 3]}

(def sample (reagent/cursor app-db [:b 0]))

(print @sample)       ;==> 1

(swap! app-db update-in [:b 0] inc)

(print @app-db)       ;==> {:a 1, :b [2 2 3]}
(print @sample)       ;==> 2
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Example

39
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Example

40

(defn cursor-parent []
  [:div
   [:p "Current state: " (pr-str @app-db)]
   [cursor-name-edit (reagent/cursor app-db [:name])]])

(def app-db  (reagent/atom {:name
                            {:first-name "John" :last-name "Smith"}}))

(defn input [prompt val]
  [:div
   prompt
   [:input {:value @val
               :on-change #(reset! val (.-target.value %))}]])

(defn cursor-name-edit [n]
  (let [{:keys [first-name last-name]} @n]
    [:div
     [:p "I'm editing " first-name " " last-name "."]

     [input "First name: " (reagent/cursor n [:first-name])]
     [input "Last name:  " (reagent/cursor n [:last-name])]]))
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Cursor and Big Ratom

41

Cursors represent small part of the data in big ratom

Cursors only update when their part of big ratom change

Changes to other parts of big ratom do not affect a cursor
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(def app-db  (reagent/atom {:name
                            {:first-name "John" :last-name "Smith"}}))

(def first-name (reagent/cursor app-db [:name :first-name]))

(defn display-count
  [value]
  (let [counter (atom 0)]
    (fn []
      (swap! counter inc)
      [:p value " " @counter])))

(defn input [prompt val]
  [:div
   prompt
   [:input {:value @val
            :on-change #(reset! val (.-target.value %))}]])
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(defn cursor-name-edit [n]
  (let [{:keys [first-name last-name]} @n]
    [:div
     [input "First name: " (reagent/cursor n [:first-name])]
     [input "Last name:  " (reagent/cursor n [:last-name])]]))

(defn cursor-parent []
  [:div
   [:p "Current state: " (pr-str @app-db)]
   [display-count @first-name]
   [cursor-name-edit (reagent/cursor app-db [:name])]])
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Back to MVC

45

(def app-db  (reagent/atom {:name
                            {:first-name "John" :last-name "Smith"}}))

(def first-name (reagent/cursor app-db [:name :first-name]))
(def last-name (reagent/cursor app-db [:name :last-name]))

Model
Data
Reading & writing of data
Logic on the data

Big ratom & cursors 
Model
Like database for app
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View

46

View - Displays model in the UI

Hiccup part of view

[:p "Current state: " (pr-str @app-db)]

(defn display-count
  [value]
  (let [counter (atom 0)]
    (fn []
      (swap! counter inc)
      [:p value " " @counter])))

(defn cursor-parent []
  [:div
   [:p "Current state: " (pr-str @app-db)]
   [display-count @first-name]
   [cursor-name-edit (reagent/cursor app-db [:name])]])
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Controller

47

(defn input [prompt val]
  [:div
   prompt
   [:input {:value @val
            :on-change #(reset! val (.-target.value %))}]])

Controller
Takes user input
Manipulates model
Cause view to update appropriately
Talks to both model & view
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MVC, Big Ratom & Cursors

48

View & Controller are mixed together

Separation of view & controller
Smalltalk had little separation between
In desktop frameworks each view usually has one controller
Martin Fowler 

This seperation not as important 
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reframe Dislikes Cursor

49

Two way flow

Mixes view & controller

Can not create different views on data
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Scale Changes Everything

50
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