
CS 696 Functional Programming and Design
Fall Semester, 2015

Doc 22 SVG, Re-frame 2
Nov 19, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, November 19, 15

Scalable Vector Graphics (SVG)

2

http://cloudfour.github.io/slides-svg-101/#/

A gentle introduction

What does this imply?

w3schools SVG Tutorial

http://www.w3schools.com/svg/

Thursday, November 19, 15

Scalable Vector Graphics (SVG)

3

Thursday, November 19, 15

Scalable Vector Graphics (SVG)

4

Rectangles
Circle
Ellipse
Line
Polygon
Polyline
Path
Text
Stroking

Shapes

Filters
Gradients

Coordinate systems
Transformations

Viewport
View box

Thursday, November 19, 15

5

(defn main []
 [:div
 [:svg {:width 600 :height 600 :stroke "black"
 :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}
 [:line {:x1 0 :y1 0
 :x2 300 :y2 300}]
 [:circle {:cx 350 :cy 350 :r 50 :fill "red" }]
 [:rect {:x 300 :y 450 :width 100 :height 50}]
]])

Thursday, November 19, 15

6

 <rect x="300" y="450" width="100" height="50" />

[:rect {:x 300 :y 450 :width 100 :height 50}]

Thursday, November 19, 15

7

[:svg {:width 600 :height 600 :stroke "black"
 :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}

Mouse position is given with respect to the window coordinates

Need to know location of svg canvas in window

Easest way is to use fixed position for svg canvas

Thursday, November 19, 15

8

(defn main []
 [:div
 [:svg {:width 600 :height 600 :stroke "black"
 :style {:position :fixed :top 0 :left 0

:border "red solid 1px"}}
 [:div
 [:line {:x1 0 :y1 0
 :x2 300 :y2 300}]
 [:circle {:cx 350 :cy 350 :r 50 :fill "red" }]
 [:rect {:x 300 :y 450 :width 100 :height 50}]]
]])

😞

Don’t nest shapes in a div or other tags

Thursday, November 19, 15

9

In a list works

(defn main []
 [:div
 [:svg {:width 600 :height 600 :stroke "black"
 :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}
 (list [:line {:x1 0 :y1 0
 :x2 300 :y2 300}]
 [:circle {:cx 350 :cy 350 :r 50 :fill "red" }]
 [:rect {:x 300 :y 450 :width 100 :height 50}])
]])

Thursday, November 19, 15

10

(defn draw
 []
 [:line {:x1 0 :y1 0
 :x2 300 :y2 300}]
 [:circle {:cx 350 :cy 350 :r 50 :fill "red" }]
 [:rect {:x 300 :y 450 :width 100 :height 50}])

(defn main []
 [:div
 [:svg {:width 600 :height 600 :stroke "black"
 :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}
 (draw)
]])

Needs to be in a list

Thursday, November 19, 15

11

(defn draw
 []
 (list [:line {:x1 0 :y1 0
 :x2 300 :y2 300}]
 [:circle {:cx 350 :cy 350 :r 50 :fill "red" }]
 [:rect {:x 300 :y 450 :width 100 :height 50}]))

(defn main []
 [:div
 [:svg {:width 600 :height 600 :stroke "black"
 :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}
 (draw)
]])

See list works

Thursday, November 19, 15

12

(defn draw-lines []
 (for [x [0 50 100]]
 [:line {:x1 x :y1 0 :x2 (+ x 300) :y2 300}]))

(defn draw-circles []
 (for [x [200 300 400]]
 [:circle {:cx x :cy 350 :r 50 :fill "red" }]))

(defn draw []
 (list
 (draw-lines)
 (draw-circles)
 [:rect {:x 300 :y 450 :width 100 :height 50}]))

(defn main []
 [:div
 [:svg {:width 600 :height 600 :stroke "black"
 :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}
 (draw)
]])

Thursday, November 19, 15

13

Thursday, November 19, 15

Data Flow

14

app-db (big ratom)

components

Hiccup

Reagent

VDOM

React

DOM

Thursday, November 19, 15

Issues of Big Ratom

15

What is the structure of the ratom?

Widget only needs small part of ratom

Thursday, November 19, 15

16

Reagent Cursors
reframe Subscriptions

Thursday, November 19, 15

Reagent Cursor

17

(cursor ratom [path])

Returns cursor on part of ratom
Acts like a ratom

Thursday, November 19, 15

Example - Changing Cursor changes ratom

18

(def sample (reagent/cursor app-db [:b 0]))
(print @sample) ;==> 1

(ns firstreagent.reframe
 (:require-macros [reagent.ratom :refer [reaction]]) ;; reaction is a macro
 (:require [reagent.core :as reagent]))

(def app-db (reagent/atom {:a 1 :b [1 2 3]}))

(print @app-db) ;==> {:a 1, :b [1 2 3]}

(reset! sample 9)

(print @sample) ;==> 9
(print @app-db) ;==> {:a 1, :b [9 2 3]}

Thursday, November 19, 15

Example - Changing ratom changes cursor

19

(def app-db (reagent/atom {:a 1 :b [1 2 3]}))

(print @app-db) ;==> {:a 1, :b [1 2 3]}

(def sample (reagent/cursor app-db [:b 0]))

(print @sample) ;==> 1

(swap! app-db update-in [:b 0] inc)

(print @app-db) ;==> {:a 1, :b [2 2 3]}
(print @sample) ;==> 2

Thursday, November 19, 15

Example

20

Thursday, November 19, 15

Example

21

(defn cursor-parent []
 [:div
 [:p "Current state: " (pr-str @app-db)]
 [cursor-name-edit (reagent/cursor app-db [:name])]])

(def app-db (reagent/atom {:name
 {:first-name "John" :last-name "Smith"}}))

(defn input [prompt val]
 [:div
 prompt
 [:input {:value @val
 :on-change #(reset! val (.-target.value %))}]])

(defn cursor-name-edit [n]
 (let [{:keys [first-name last-name]} @n]
 [:div
 [:p "I'm editing " first-name " " last-name "."]

 [input "First name: " (reagent/cursor n [:first-name])]
 [input "Last name: " (reagent/cursor n [:last-name])]]))

Thursday, November 19, 15

Cursor and Big Ratom

22

Cursors represent small part of the data in big ratom

Cursors only update when their part of big ratom change

Changes to other parts of big ratom do not affect a cursor

Thursday, November 19, 15

23

Thursday, November 19, 15

24

(def app-db (reagent/atom {:name
 {:first-name "John" :last-name "Smith"}}))

(def first-name (reagent/cursor app-db [:name :first-name]))

(defn display-count
 [value]
 (let [counter (atom 0)]
 (fn []
 (swap! counter inc)
 [:p value " " @counter])))

(defn input [prompt val]
 [:div
 prompt
 [:input {:value @val
 :on-change #(reset! val (.-target.value %))}]])

Thursday, November 19, 15

25

(defn cursor-name-edit [n]
 (let [{:keys [first-name last-name]} @n]
 [:div
 [input "First name: " (reagent/cursor n [:first-name])]
 [input "Last name: " (reagent/cursor n [:last-name])]]))

(defn cursor-parent []
 [:div
 [:p "Current state: " (pr-str @app-db)]
 [display-count @first-name]
 [cursor-name-edit (reagent/cursor app-db [:name])]])

Thursday, November 19, 15

Back to MVC

26

(def app-db (reagent/atom {:name
 {:first-name "John" :last-name "Smith"}}))

(def first-name (reagent/cursor app-db [:name :first-name]))
(def last-name (reagent/cursor app-db [:name :last-name]))

Model
Data
Reading & writing of data
Logic on the data

Big ratom & cursors
Model
Like database for app

Thursday, November 19, 15

View

27

View - Displays model in the UI

Hiccup part of view

[:p "Current state: " (pr-str @app-db)]

(defn display-count
 [value]
 (let [counter (atom 0)]
 (fn []
 (swap! counter inc)
 [:p value " " @counter])))

(defn cursor-parent []
 [:div
 [:p "Current state: " (pr-str @app-db)]
 [display-count @first-name]
 [cursor-name-edit (reagent/cursor app-db [:name])]])

Thursday, November 19, 15

Controller

28

(defn input [prompt val]
 [:div
 prompt
 [:input {:value @val
 :on-change #(reset! val (.-target.value %))}]])

Controller
Takes user input
Manipulates model
Cause view to update appropriately
Talks to both model & view

Thursday, November 19, 15

MVC, Big Ratom & Cursors

29

View & Controller are mixed together

Separation of view & controller
Smalltalk had little separation between
In desktop frameworks each view usually has one controller
Martin Fowler

This seperation not as important

Thursday, November 19, 15

reframe Dislikes Cursor

30

Two way flow

Mixes view & controller

Can not create different views on data

Thursday, November 19, 15

reframe Subscribe & Events

31

Subscriptions
Used in views to get data from big ratom
Only way for views to get data
Only used in views

Events
When things happen that need change in data
Used to trigger changes in big ratom

Handlers
Subscription & Events have handlers that do the work

Thursday, November 19, 15

Goal

32

Keep Model & Controller logic

Separate
Out of Views

reframe manages big ratom
So view has to use subcription to get data

Thursday, November 19, 15

33

(ns firstreagent.reframefull
 (:require-macros [reagent.ratom :refer [reaction]])
 (:require [re-frame.core :refer [register-handler
 path
 register-sub
 dispatch
 dispatch-sync
 subscribe]]))

(def initial-state
 {:name "Roger"
 :age 21})

(register-handler
 :initialize
 (fn
 [db _]
 (merge db initial-state)))

Handler
label
function

Handler function arguments
first - big ratom
rest - what is sent when called

What the handler returns becomes big ratom

(dispatch-sync [:initialize])

Thursday, November 19, 15

34

(register-sub
 :name-sub
 (fn
 [db _]
 (reaction (:name @db))))

(defn display-name
 []
 (let [name (subscribe [:name-sub])]
 (fn name-render
 []
 [:p "Hello " @name])))

display-name is the view

It knows nothing about the model

Thursday, November 19, 15

Handers & Arguments

35

(register-sub
 :name-sub
 (fn
 [db [label a b]]
 (reaction (str label " a: " b " b: " b " "(:name @db)))))

(defn display-name
 []
 (let [name (subscribe [:name-sub "cat" "dog"])]
 (fn name-render
 []
 [:p "Hello " @name])))

Second fn argument

Label for subscription

Data passed in subscribe

Thursday, November 19, 15

Updating Big Ratom

36

Need event handler

dispatch an event with data

Thursday, November 19, 15

37

(register-handler
 :name
 (fn
 [db [_ value]]
 (assoc db :name value)))

(defn name-input
 []
 (let [name (subscribe [:name])]
 (fn name-input-render
 []
 [:div
 "Name: "
 [:input {:type "text"
 :value @name
 :on-change #(dispatch
 [:name (-> % .-target .-value)])}]])))

(defn main
 []
 [:div
 [name-input]
 [display-name]])

Thursday, November 19, 15

38

(defn clock []
 (let [timer (subscribe [:timer])]
 (fn clock-render []
 (let [time-str (-> @timer
 .toTimeString
 (clojure.string/split " ")
 first)]
 [:div time-str]))))

(defn main [] [clock])
(dispatch-sync [:initialize])

(defonce time-updater (js/setInterval
 #(dispatch [:timer (js/Date.)]) 1000))

(register-handler
 :initialize
 (fn
 [db _]
 (merge db {:timer (js/Date.)})))

(register-handler
 :timer
 (fn
 [db [_ value]]
 (assoc db :timer value)))

(register-sub
 :timer
 (fn
 [db _]
 (reaction (:timer @db))))

Thursday, November 19, 15

The imports

39

(ns firstreagent.timer
 (:require-macros [reagent.ratom :refer [reaction]])
 (:require [reagent.core :as reagent]
 [re-frame.core :refer [register-handler
 path
 register-sub
 dispatch
 dispatch-sync
 subscribe]]))

Thursday, November 19, 15

40

Gave smallest possible examples

Logic will grow in handlers

Views remain clear of
Model
Controlle

Thursday, November 19, 15

41

Single Page App with multiple views

Thursday, November 19, 15

First Project

42

lein new reagent projectname

Thursday, November 19, 15

clj - handler

43

(def mount-target
 [:div#app
 [:h3 "ClojureScript has not been compiled!"]
 [:p "please run "
 [:b "lein figwheel"] " in order to start the compiler"]])

(def loading-page
 (html
 [:html
 [:head
 [:meta {:charset "utf-8"}]
 [:meta {:name "viewport"
 :content "width=device-width, initial-scale=1"}]
 (include-css (if (env :dev) "css/site.css" "css/site.min.css"))]
 [:body
 mount-target
 (include-js "js/app.js")]]))

(defroutes routes
 (GET "/" [] loading-page)
 (GET "/about" [] loading-page)

Thursday, November 19, 15

defroutes

44

(defroutes routes
 (GET "/" [] loading-page)
 (GET "/about" [] loading-page)

Method
GET
POST

URL URL
parameters

Function to call
When URL is requested

Thursday, November 19, 15

45

(def loading-page
 (html
 [:html
 [:head
 [:meta {:charset "utf-8"}]
 [:meta {:name "viewport"
 :content "width=device-width, initial-scale=1"}]
 (include-css (if (env :dev) "css/site.css" "css/site.min.css"))]
 [:body
 mount-target
 (include-js "js/app.js")]]))

Hiccup to define page

Generate HTML

Thursday, November 19, 15

46

(def mount-target
 [:div#app
 [:h3 "ClojureScript has not been compiled!"]
 [:p "please run "
 [:b "lein figwheel"]
 " in order to start the compiler"]])

id
Client will replace this if working correctly

Thursday, November 19, 15

Client-Side Libraries

47

accountant.core

secretary.core

ClojureScript library to make navigation in single-page applications simple

Defines client side routes
URLs & function to call

reagent.session

Just an atom
Used to store state

Thursday, November 19, 15

48

(defn home-page []
 [:div [:h2 "Welcome to foobar"]
 [:div [:a {:href "/about"} "go to about page"]]])

(defn about-page []
 [:div [:h2 "About foobar"]
 [:div [:a {:href "/"} "go to the home page"]]])

(defn current-page [] [:div [(session/get :current-page)]])

(secretary/defroute "/" []
 (session/put! :current-page #'home-page))

(secretary/defroute "/about" []
 (session/put! :current-page #'about-page))

(defn mount-root []
 (reagent/render [current-page] (.getElementById js/document "app")))

(defn init! []
 (accountant/configure-navigation!)
 (accountant/dispatch-current!)
 (mount-root))

Client Side

Thursday, November 19, 15

Hiccup for HTML

49

(defn home-page []
 [:div [:h2 "Welcome to foobar"]
 [:div [:a {:href "/about"} "go to about page"]]])

(defn about-page []
 [:div [:h2 "About foobar"]
 [:div [:a {:href "/"} "go to the home page"]]])

Thursday, November 19, 15

Routes

50

(secretary/defroute "/" []
 (session/put! :current-page #'home-page))

(secretary/defroute "/about" []
 (session/put! :current-page #'about-page))

For each URL
Change atom to hold reference to which function to call

Thursday, November 19, 15

51

(defn current-page [] [:div [(session/get :current-page)]])

(defn mount-root []
 (reagent/render [current-page] (.getElementById js/document "app")))

Lists are expanded in Hiccup
So expands to the current page

Magic function
Render the client page each time current-page changes

Thursday, November 19, 15

