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Scalable Vector Graphics (SVG)
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http://cloudfour.github.io/slides-svg-101/#/

A gentle introduction

What does this imply?

w3schools SVG Tutorial

http://www.w3schools.com/svg/
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Scalable Vector Graphics (SVG)
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Scalable Vector Graphics (SVG)

4

Rectangles
Circle
Ellipse
Line
Polygon
Polyline
Path
Text
Stroking

Shapes

Filters
Gradients

Coordinate systems
Transformations

Viewport
View box
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(defn main []
  [:div
   [:svg {:width 600 :height 600 :stroke "black"
          :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}
    [:line {:x1 0 :y1 0
            :x2 300 :y2 300}]
    [:circle {:cx 350 :cy 350 :r 50 :fill "red" }]
    [:rect {:x 300 :y 450 :width 100 :height 50}]
    ]])
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  <rect x="300" y="450" width="100" height="50" />

[:rect {:x 300 :y 450 :width 100 :height 50}]
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[:svg {:width 600 :height 600 :stroke "black"
          :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}

Mouse position is given with respect to the window coordinates

Need to know location of svg canvas in window

Easest way is to use fixed position for svg canvas 
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(defn main []
  [:div
   [:svg {:width 600 :height 600 :stroke "black"
          :style {:position :fixed :top 0 :left 0 

:border "red solid 1px"}}
    [:div
     [:line {:x1 0 :y1 0
             :x2 300 :y2 300}]
     [:circle {:cx 350 :cy 350 :r 50 :fill "red" }]
     [:rect {:x 300 :y 450 :width 100 :height 50}]]
    ]])

😞

Don’t nest shapes in a div or other tags
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In a list works

(defn main []
  [:div
   [:svg {:width 600 :height 600 :stroke "black"
          :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}
    (list [:line {:x1 0 :y1 0
            :x2 300 :y2 300}]
       [:circle {:cx 350 :cy 350 :r 50 :fill "red" }]
       [:rect {:x 300 :y 450 :width 100 :height 50}])
    ]])
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(defn draw
  []
  [:line {:x1 0 :y1 0
          :x2 300 :y2 300}]
  [:circle {:cx 350 :cy 350 :r 50 :fill "red" }]
  [:rect {:x 300 :y 450 :width 100 :height 50}])

(defn main []
  [:div
   [:svg {:width 600 :height 600 :stroke "black"
          :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}
    (draw)
    ]])

Needs to be in a list
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(defn draw
  []
  (list [:line {:x1 0 :y1 0
            :x2 300 :y2 300}]
     [:circle {:cx 350 :cy 350 :r 50 :fill "red" }]
     [:rect {:x 300 :y 450 :width 100 :height 50}]))

(defn main []
  [:div
   [:svg {:width 600 :height 600 :stroke "black"
          :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}
    (draw)
    ]])

See list works
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(defn draw-lines []
  (for [x [0 50 100]]
    [:line {:x1 x :y1 0 :x2 (+ x 300) :y2 300}]))

(defn draw-circles []
  (for [x [200  300 400 ]]
    [:circle {:cx x :cy 350 :r 50 :fill "red" }]))

(defn draw []
  (list
    (draw-lines)
    (draw-circles)
     [:rect {:x 300 :y 450 :width 100 :height 50}]))

(defn main []
  [:div
   [:svg {:width 600 :height 600 :stroke "black"
          :style {:position :fixed :top 0 :left 0 :border "red solid 1px"}}
    (draw)
    ]])
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Data Flow
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app-db (big ratom)

components

Hiccup

Reagent

VDOM

React

DOM
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Issues of Big Ratom
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What is the structure of the ratom?

Widget only needs small part of ratom
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Reagent Cursors
reframe Subscriptions
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Reagent Cursor
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(cursor ratom [path])

Returns cursor on part of ratom
Acts like a ratom
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Example - Changing Cursor changes ratom
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(def sample (reagent/cursor app-db [:b 0]))
(print @sample)        ;==> 1

(ns firstreagent.reframe
  (:require-macros [reagent.ratom :refer [reaction]])  ;; reaction is a macro
  (:require        [reagent.core  :as    reagent]))

(def app-db  (reagent/atom {:a 1 :b [1 2 3]}))     
      
(print @app-db)        ;==> {:a 1, :b [1 2 3]}

(reset! sample 9)

(print @sample)        ;==> 9
(print @app-db)        ;==> {:a 1, :b [9 2 3]}
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Example - Changing ratom changes cursor
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(def app-db  (reagent/atom {:a 1 :b [1 2 3]}))

(print @app-db)       ;==> {:a 1, :b [1 2 3]}

(def sample (reagent/cursor app-db [:b 0]))

(print @sample)       ;==> 1

(swap! app-db update-in [:b 0] inc)

(print @app-db)       ;==> {:a 1, :b [2 2 3]}
(print @sample)       ;==> 2
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Example
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Example
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(defn cursor-parent []
  [:div
   [:p "Current state: " (pr-str @app-db)]
   [cursor-name-edit (reagent/cursor app-db [:name])]])

(def app-db  (reagent/atom {:name
                            {:first-name "John" :last-name "Smith"}}))

(defn input [prompt val]
  [:div
   prompt
   [:input {:value @val
               :on-change #(reset! val (.-target.value %))}]])

(defn cursor-name-edit [n]
  (let [{:keys [first-name last-name]} @n]
    [:div
     [:p "I'm editing " first-name " " last-name "."]

     [input "First name: " (reagent/cursor n [:first-name])]
     [input "Last name:  " (reagent/cursor n [:last-name])]]))
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Cursor and Big Ratom
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Cursors represent small part of the data in big ratom

Cursors only update when their part of big ratom change

Changes to other parts of big ratom do not affect a cursor
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(def app-db  (reagent/atom {:name
                            {:first-name "John" :last-name "Smith"}}))

(def first-name (reagent/cursor app-db [:name :first-name]))

(defn display-count
  [value]
  (let [counter (atom 0)]
    (fn []
      (swap! counter inc)
      [:p value " " @counter])))

(defn input [prompt val]
  [:div
   prompt
   [:input {:value @val
            :on-change #(reset! val (.-target.value %))}]])
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(defn cursor-name-edit [n]
  (let [{:keys [first-name last-name]} @n]
    [:div
     [input "First name: " (reagent/cursor n [:first-name])]
     [input "Last name:  " (reagent/cursor n [:last-name])]]))

(defn cursor-parent []
  [:div
   [:p "Current state: " (pr-str @app-db)]
   [display-count @first-name]
   [cursor-name-edit (reagent/cursor app-db [:name])]])
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Back to MVC
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(def app-db  (reagent/atom {:name
                            {:first-name "John" :last-name "Smith"}}))

(def first-name (reagent/cursor app-db [:name :first-name]))
(def last-name (reagent/cursor app-db [:name :last-name]))

Model
Data
Reading & writing of data
Logic on the data

Big ratom & cursors 
Model
Like database for app
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View
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View - Displays model in the UI

Hiccup part of view

[:p "Current state: " (pr-str @app-db)]

(defn display-count
  [value]
  (let [counter (atom 0)]
    (fn []
      (swap! counter inc)
      [:p value " " @counter])))

(defn cursor-parent []
  [:div
   [:p "Current state: " (pr-str @app-db)]
   [display-count @first-name]
   [cursor-name-edit (reagent/cursor app-db [:name])]])
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Controller
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(defn input [prompt val]
  [:div
   prompt
   [:input {:value @val
            :on-change #(reset! val (.-target.value %))}]])

Controller
Takes user input
Manipulates model
Cause view to update appropriately
Talks to both model & view
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MVC, Big Ratom & Cursors
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View & Controller are mixed together

Separation of view & controller
Smalltalk had little separation between
In desktop frameworks each view usually has one controller
Martin Fowler 

This seperation not as important 
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reframe Dislikes Cursor
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Two way flow

Mixes view & controller

Can not create different views on data
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reframe Subscribe & Events
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Subscriptions
Used in views to get data from big ratom
Only way for views to get data
Only used in views

Events
When things happen that need change in data
Used to trigger changes in big ratom

Handlers
Subscription & Events have handlers that do the work
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Goal
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Keep Model & Controller logic 

Separate
Out of Views

reframe manages big ratom
So view has to use subcription to get data
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(ns firstreagent.reframefull
  (:require-macros [reagent.ratom :refer [reaction]])
  (:require [re-frame.core :refer [register-handler
                                   path
                                   register-sub
                                   dispatch
                                   dispatch-sync
                                   subscribe]]))

(def initial-state
  {:name "Roger"
   :age 21})

(register-handler              
  :initialize                   
  (fn
    [db _]
    (merge db initial-state)))

Handler
label
function

Handler function arguments
first - big ratom
rest - what is sent when called

What the handler returns becomes big ratom

(dispatch-sync [:initialize])
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(register-sub
  :name-sub
  (fn
    [db _]                 
    (reaction (:name @db))))

(defn display-name
  []
  (let [name (subscribe [:name-sub])]
    (fn name-render
      []
      [:p "Hello " @name])))

display-name is the view

It knows nothing about the model
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Handers & Arguments
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(register-sub
  :name-sub
  (fn
    [db [label a b]]
    (reaction (str label  " a: " b " b: " b " "(:name @db)))))

(defn display-name
  []
  (let [name (subscribe [:name-sub "cat" "dog"])]
    (fn name-render
      []
      [:p "Hello " @name])))

Second fn argument

Label for subscription

Data passed in subscribe
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Updating Big Ratom
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Need event handler

dispatch an event with data
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(register-handler
  :name
  (fn
    [db [_ value]]
    (assoc db :name value)))

(defn name-input
  []
  (let [name (subscribe [:name])]
    (fn name-input-render
      []
      [:div
       "Name: "
       [:input {:type "text"
                :value @name
                :on-change #(dispatch
                             [:name (-> % .-target .-value)])}]])))

(defn main
  []
  [:div
   [name-input]
   [display-name]])
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(defn clock []
  (let [timer (subscribe [:timer])]
    (fn clock-render []
      (let [time-str (-> @timer
                         .toTimeString
                         (clojure.string/split " ")
                         first)]
        [:div time-str]))))

(defn main [] [clock])
(dispatch-sync [:initialize])

(defonce time-updater (js/setInterval
                        #(dispatch [:timer (js/Date.)]) 1000))

(register-handler
  :initialize
  (fn
    [db _]
    (merge db {:timer (js/Date.)})))

(register-handler
  :timer
  (fn
    [db [_ value]]
    (assoc db :timer value)))

(register-sub
  :timer
  (fn
    [db _]
    (reaction (:timer @db))))
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The imports
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(ns firstreagent.timer
  (:require-macros [reagent.ratom :refer [reaction]])
  (:require [reagent.core :as reagent]
            [re-frame.core :refer [register-handler
                                   path
                                   register-sub
                                   dispatch
                                   dispatch-sync
                                   subscribe]]))
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Gave smallest possible examples

Logic will grow in handlers

Views remain clear of 
Model
Controlle
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Single Page App with multiple views
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First Project
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lein new reagent projectname
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clj - handler
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(def mount-target
  [:div#app
      [:h3 "ClojureScript has not been compiled!"]
      [:p "please run "
       [:b "lein figwheel"]  " in order to start the compiler"]])

(def loading-page
  (html
   [:html
    [:head
     [:meta {:charset "utf-8"}]
     [:meta {:name "viewport"
             :content "width=device-width, initial-scale=1"}]
     (include-css (if (env :dev) "css/site.css" "css/site.min.css"))]
    [:body
     mount-target
     (include-js "js/app.js")]]))

(defroutes routes
  (GET "/" [] loading-page)
  (GET "/about" [] loading-page)
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defroutes
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(defroutes routes
  (GET "/" [] loading-page)
  (GET "/about" [] loading-page)

Method
GET
POST

URL URL
parameters

Function to call
When URL is requested
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(def loading-page
  (html
   [:html
    [:head
     [:meta {:charset "utf-8"}]
     [:meta {:name "viewport"
             :content "width=device-width, initial-scale=1"}]
     (include-css (if (env :dev) "css/site.css" "css/site.min.css"))]
    [:body
     mount-target
     (include-js "js/app.js")]]))

Hiccup to define page

Generate HTML
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(def mount-target
  [:div#app
      [:h3 "ClojureScript has not been compiled!"]
      [:p "please run "
       [:b "lein figwheel"]
       " in order to start the compiler"]])

id
Client will replace this if working correctly
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Client-Side Libraries
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accountant.core

secretary.core

ClojureScript library to make navigation in single-page applications simple

Defines client side routes
URLs & function to call  

reagent.session

Just an atom
Used to store state
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(defn home-page []
  [:div [:h2 "Welcome to foobar"]
   [:div [:a {:href "/about"} "go to about page"]]])

(defn about-page []
  [:div [:h2 "About foobar"]
   [:div [:a {:href "/"} "go to the home page"]]])

(defn current-page []   [:div [(session/get :current-page)]])

(secretary/defroute "/" []
  (session/put! :current-page #'home-page))

(secretary/defroute "/about" []
  (session/put! :current-page #'about-page))

(defn mount-root []
  (reagent/render [current-page] (.getElementById js/document "app")))

(defn init! []
  (accountant/configure-navigation!)
  (accountant/dispatch-current!)
  (mount-root))

Client Side
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Hiccup for HTML
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(defn home-page []
  [:div [:h2 "Welcome to foobar"]
   [:div [:a {:href "/about"} "go to about page"]]])

(defn about-page []
  [:div [:h2 "About foobar"]
   [:div [:a {:href "/"} "go to the home page"]]])
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Routes
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(secretary/defroute "/" []
  (session/put! :current-page #'home-page))

(secretary/defroute "/about" []
  (session/put! :current-page #'about-page))

For each URL
Change atom to hold reference to which function to call
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(defn current-page []   [:div [(session/get :current-page)]])

(defn mount-root []
  (reagent/render [current-page] (.getElementById js/document "app")))

Lists are expanded in Hiccup
So expands to the current page

Magic function
Render the client page each time current-page changes
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