
CS 596 Functional Programming and Design
Fall Semester, 2015

Doc 25 Sample Code, Monads
Dec 8, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500 
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this 
document.

Tuesday, December 8, 15



2

Beginner Clojure Code

Tuesday, December 8, 15



Masters Exam Website

3

Implemented by four undergraduate students from Brazil

No Clojure experience

No Functional Programming experience

Only one had any web programming experience

Tuesday, December 8, 15



4

Long Sequences of composed functions

Used recursion rather than higher order functions
map/reduce/filter

Towards the end started using higher order functions

Tuesday, December 8, 15



Issue: Displaying Dates

5

Tuesday, December 8, 15



6

(defn convert-date-to-calendar-format
  "Get a whole vector of maps and convert a date type (yyyy-mm-dd) to 
   Calendar type (Day, Month Day, Year)"

  ([vector-of-maps key] (convert-date-to-calendar-format vector-of-maps key []))

  ([vector-of-maps key result]
     (if (empty? vector-of-maps)
         result
         (convert-date-to-calendar-format 

(rest vector-of-maps) 
key

                                      (conj 
result 
(assoc (first vector-of-maps) 
  (keyword key) 
  (f/unparse calendar-formatter (c/from-sql-date 
     ((keyword key) (first vector-of-maps))))))))))

All the work is done in last argument of the last argument of the last argument 
of the recursion

Tuesday, December 8, 15



The Actual Work

7

(defn date->string
  "Convert a java.sql.Date object to string Full date format
   ie Thursday, January 14, 2016"
  [sql-date]
  (->> sql-date

    c/from-sql-date
         (f/unparse calendar-formatter)))

Tuesday, December 8, 15



8

(defn convert-date-to-calendar-format
  "Get a whole vector of maps and convert a date type (yyyy-mm-dd) to 
   Calendar type (Day, Month Day, Year)"

  ([vector-of-maps key] (convert-date-to-calendar-format vector-of-maps key []))

  ([vector-of-maps key result]
     (if (empty? vector-of-maps)
         result
         (convert-date-to-calendar-format 

(rest vector-of-maps) 
key

                                      (conj 
result 
(assoc (first vector-of-maps) 
  (keyword key) 
  (date->string 
   ((keyword key) 
   (first vector-of-maps))))))))))

Tuesday, December 8, 15



Using Higher Order Functions

9

(defn date->string
  "Convert a java.sql.Date object to string - Thursday, January 14, 2016"
  [sql-date]
  (->> sql-date
          c/from-sql-date
          (f/unparse calendar-formatter)))

(defn convert-date-to-calendar-format
  "Convert value at key from java.sql.Date to string - Full date format"
  [vector-of-maps key]
  (mapv #(update % key date->string) vector-of-maps))

Tuesday, December 8, 15



Issue: Entering Student Requests in Database

10

Students can sign up for 1- 3 exams

Tuesday, December 8, 15



11

(defn insert-request!
   "Manipulate request to be sent to database"
   [current-id request-map]
   (when (string? (:exam_id request-map))
     (let [new-exam-id (Integer. (:exam_id request-map))]
         (insert-request-to-db! (assoc request-map :exam_id new-exam-id 

           :request_date (l/local-now) 
           :student_redid current-id)))))

(defn insert-exam-request!
  "Add exam request to student in database
   current-id Int student Red Id requesting exam
   request-map {:exam_id IntOrString, _} Id of exam to add"
  [current-id request-map]
  (let [exam-id-int (Integer. (:exam_id request-map))]
    (insert-request-to-db! {:exam_id exam-id-int
                                        :request_date (l/local-now)
                                         :student_redid current-id})))

Tuesday, December 8, 15



12

(defn insert-multiple-requests!
  "Insert multiple exam requests"
  [current-id request-map]
  (if (vector? (:exam_id request-map))
    (let [request (core/from-map-of-vector-to-vector-of-maps-request request-map)]
      (loop [req request]
        (when (not-empty req)
          (insert-exam-request! current-id (first req))
          (recur (rest req)))))
    (insert-exam-request! current-id request-map)))

(defn insert-multiple-requests!
  "Insert multiple exam requests"
  [current-id request-map]
  (if (vector? (:exam_id request-map))
    (let [request (core/from-map-of-vector-to-vector-of-maps-request request-map)]
      (doseq [req request]
          (insert-exam-request! current-id  req)))
    (insert-exam-request! current-id request-map)))

Tuesday, December 8, 15



13

(defn from-map-of-vector-to-vector-of-maps-request
  "Change the structure from map of vectors to vector of maps"
  [map-of-vectors]
  (vec (for [x (range (count (:exam_id map-of-vectors)))]
         {:exam_id (nth (:exam_id map-of-vectors) x)})))

(defn from-map-of-vector-to-vector-of-maps-request
  "{:exam_id [a b c],_ } -> [{:exam_id a} {:exam_id b} {:exam_id c}]"
  [map-of-vectors]
  (vec (for [x (range (count (:exam_id map-of-vectors)))]
         {:exam_id (nth (:exam_id map-of-vectors) x)})))

This is only used in one function - insert-multiple-requests!

(defn from-map-of-vector-to-vector-of-maps-request
  "{:exam_id [a b c],_ } -> [{:exam_id a} {:exam_id b} {:exam_id c}]"
  [map-of-vectors]
  (for [x (:exam_id map-of-vectors)]
         {:exam_id x}))

Tuesday, December 8, 15



14

(defn insert-multiple-requests!
  "Insert multiple exam requests
   request-map {:exam_id IntOrString} or {:exam_id [IntOrStrings]}"
  [current-id request-map]
  (if (vector? (:exam_id request-map))
      (doseq [exam-id (:exam_id request-map)]
          (insert-exam-request! current-id  {:exam_id exam-id}))
    (insert-exam-request! current-id request-map)))

(defn insert-multiple-requests!
  "Insert multiple exam requests"
  [current-id request-map]
  (if (vector? (:exam_id request-map))
    (let [request (core/from-map-of-vector-to-vector-of-maps-request request-map)]
      (loop [req request]
        (when (not-empty req)
          (insert-exam-request! current-id (first req))
          (recur (rest req)))))
    (insert-exam-request! current-id request-map)))

Tuesday, December 8, 15



15

Simpler code

Improved function names

More information about arguments

Tuesday, December 8, 15



Step in Processing Students Request

16

Get data from web page

Validate data
1-3 exams
No exams that meet at same time

If errors display them to user 

Convert data into format needed by database

Enter data into database

All done as one thing

Tuesday, December 8, 15



17

(defn request-exam
  "Requests an exam"
  [request exams]
  (let [current-id {:redid (Integer. (:identity request))}
        registered-exams (student/get-active-registered-exams current-id)
        registered-exams-after-calendar (core/convert-date-to-calendar-format registered-exams :exam_date)
        registered-exams-after-slash (core/convert-dash-to-slash-format registered-exams-after-calendar :register_start :register_end)
        exam (exam/filter-exams-for-registration (exam/get-available-exams current-id))
        exam-after-calendar (core/convert-date-to-calendar-format exam :exam_date)
        exam-after-slash (core/convert-dash-to-slash-format exam-after-calendar :register_start :register_end)]
    (if (too-many-exams (:exam_id exams) registered-exams-after-slash)
      (layout/render "students/exam-request.html" {:exams   exam-after-slash :registered-exams registered-exams-after-slash
                                                   :request request :error "You can only register for three exams"})
      (if (exam/verify-conflict-exam-requests exams)
        (layout/render "students/exam-request.html" {:exams   exam-after-slash :registered-exams registered-exams-after-slash
                                                     :request request :error "You cannot register for exams given at the same time"})
        (let [current-id (Integer. (:identity request))]
          (try
            (exam/insert-multiple-requests! current-id exams)
            (response/redirect "/masters/students/request-exam")
            (catch Exception e
              (timbre/error e)
              (response/redirect "/masters/students/request-exam")
              )))))))

Tuesday, December 8, 15



How to make sure it works

18

Display web page

Enter data

See what happens

Debugging behind web server using web browser sucks

The structure of the program makes it hard to debug/maintain/extend

Tuesday, December 8, 15



Make Independent 

19

Get data from web page

Validate data

Convert data into format needed by database

Enter data into database

You can test at least the last two in
REPL
Unit tests

Testing database is work

Seperate converting data
From adding to database

Tuesday, December 8, 15



20

The End of Dynamic Languages

By Elben Shira

Nov 22, 2015

http://elbenshira.com/blog/the-end-of-dynamic-languages/

Tuesday, December 8, 15



21

Used Clojure in the past

Working in Scala (work) and Haskell (side project)

Spent a week doing Ruby & Clojure

Uncertainty

What are the arguments to the functions

(defn convert-date-to-calendar-format  [vector-of-maps key]

Tuesday, December 8, 15



22

Tuesday, December 8, 15



AppsFlyer

23

Mobile Analytics Company 

Based in San Francisco

2 Billion events per day

Traffic double in 3 months

Grew from 6 to 50 people past year

Technologies used
Redis, Kafka, Couchbase, CouchDB, Neo4j
ElasticSearch, RabbitMQ, Consul, Docker, Mesos
MongpDB, Riemann, Hadoop, Secor, Cascalog, AWS

Tuesday, December 8, 15



AppsFlyer - Python Based

24

Started code base in Python

After two years python could not handle the traffic

Problems caused by
String manipulations
Python memory management

Tuesday, December 8, 15



Their options

25

Rewrite parts in C & wrap in Python

Rewrite in programming language more suitable for data proccessing

Wanted to try Functional Programming

Tuesday, December 8, 15



Scala vs. OCaml vs. Haskell vs. Clojure

26

Scala
Functional & Object Oriented 
They wanted pure Functional

OCaml
Smaller community
Only one thread runs at a time even on multicore

Haskell
Monads made us cringe in fear

Clojure
Runs on JVM
Access to mutable state if needed
Now have 10 Clojure engineers

Tuesday, December 8, 15



Monads

27

What are they?

Why do they make engineers cringe in fear?

Tuesday, December 8, 15



28

Monoids & Monads

Tuesday, December 8, 15



29

Monoid

Binary Function
Two parameters

Parameters and returned value have same type

Identity value

Associatively

Integer +

2 + 1 

2 + 0

(2+3) + 4 = 2 + (3 + 4)

Tuesday, December 8, 15



30

Monoid

Binary Function
Two parameters

Parameters and returned value - same type

Identity value

Associatively

Java String concat

“hi”.concat(“ Mom”); 

“hi”.concat(“”)

“hi”.concat(“Mom”.concat(“!”))
“hi”.concat(“Mom”).concat(“!”)

Tuesday, December 8, 15



31

Monoid

Binary Function
Two parameters

Parameters and returned value - same type

Identity value

Associatively

Sets union 

“hi”.concat(“ Mom”); 

“hi”.concat(“”)

“hi”.concat(“Mom”.concat(“!”))
“hi”.concat(“Mom”).concat(“!”)

Tuesday, December 8, 15



Monoid

32

Associative binary function F: X*X -> X
that has an identity

Tuesday, December 8, 15



Haskell

33

class Monoid m where  
    mempty :: m  
    mappend :: m -> m -> m  
    mconcat :: [m] -> m  
    mconcat = foldr mappend mempty 

Tuesday, December 8, 15



Monad - Some Motivation

34

Exceptions
Interrupt program flow

(filter foo [a b c d e f g h])

Tuesday, December 8, 15



Swift - optionals

35

let possibleNumber = "123"
let convertedNumber = possibleNumber.toInt()

if (convertedNumber) 
 println( convertedNumber! )

Tuesday, December 8, 15



Pyramid Of Doom

36

let b = foo(a)
if b

let c = bar(b)
if c

let d = fooBar(c)
if d

let e = barFoo(e)
if e

return e!
return “No e”

return “No d”
return “No c”

return “No b”

Tuesday, December 8, 15



Clojure-like example

37

(-> some-collection
foo
bar
fooBar
barFoo)

What if one of the functions (foo, etc)
returns an optional?

All the rest of the functions need handle them

Tuesday, December 8, 15



Haskell Monad

38

Contains a context & four functions

return
return :: a -> m a
Takes a value and wraps in a monad

bind
(>>=) :: m a -> (a -> m b) -> m b
Take a 

monad
function that requires a regular value and returns a monad
Applies the function to the monad

Tuesday, December 8, 15



Haskell Monad

39

Contains a context & four functions

>>
(>>) :: m a -> m b -> m b
First argument is ignored

Error

Tuesday, December 8, 15



What are Monads used for?

40

In Haskell all functions are pure

Monad contexts can have side effects

All I/O in Haskell is done in monads

Monads allow you to compose computational steps together

Tuesday, December 8, 15



Monads in Clojure

41

let
for
->
->>

Tuesday, December 8, 15



Monads Tutorial For Clojure Programmers

42

http://onclojure.com/2009/03/05/a-monad-tutorial-for-clojure-programmers-part-1/

Tuesday, December 8, 15

http://onclojure.com/2009/03/05/a-monad-tutorial-for-clojure-programmers-part-1/
http://onclojure.com/2009/03/05/a-monad-tutorial-for-clojure-programmers-part-1/

