
CS 696 Intro to Big Data: Tools and Methods
Fall Semester, 2017

Doc 6 Sampling
Sep 11, 2017

Copyright ©, All rights reserved. 2017 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

Sampling - Motivation

2

How to find mean and median of 1 Billion values?

Web browser wants to warn user when they request a known malicious website
Could be millions of malicious websites
Don’t want to check server for each URL

Web Crawler
Visit page A
Extract all links from page A
Repeat process on all links from page A
How to know if you have already visited a page?
Google indexes ~45 Billion web pages

Descriptive Statistics

3

mean
median
mode
variance
standard variation
quantiles

Descriptive Statistics

4

mean(numbers) = sum(numbers)/length(numbers)

median
Middle value of sorted list of numbers
If even number of values then mean of middle two values

mean([1,7,3,8,5]) == 4.80

median([1,7,3,8,5]) == 5.00

Arithmetic mean

mode
Value that appears the most in the data

Descriptive Statistics

5

Variance
Measures the spread in the numbers

Standard Deviation, (SD, s, σ)
square root of the variance

https://en.wikipedia.org/wiki/Sigma

Quantiles

6

Cutpoints that divide the sorted data into q equal sized groups

q-quantiles

4-quantile, quartile

1 1 4 7 7 8 10 15 17 17 25 26

second quartile
median
Q2

first quartile
Q1

third quartile
Q3

7

Red Bar shows middle two quartiles

White bar is median

Distributions

8

Think in distributions not numbers

Normal (Gaussian) Distribution

9

Normal distribution is specified by
µ - mean, central point
σ - standard deviation

Central Limit Theorem

10

Let
X1, X2, ..., XN random sample
SN = (X1 + ... + XN)/N

Then as N gets large SN approximates
the normal distribution

Area in Shaded Part

11

Area Z*

99% 2.576

98% 2.326

95% 1.96

90% 1.645

µµ - z*σ µ + z*σ

Confidence Interval

Populations & Samples

12

Populations - all the items
Sample - set of representative items

Measure
Sample
statistic

Population
parameter

Number of items n N

Mean x ̄ µx

Standard deviation Sx σx

Standard error Sx̄

Standard Error of sample = σx/sqrt(n)

Standard Error of mean (SEM)

Standard deviation of the sample-mean estimate of a population mean

Note to decrease the SE by 2 we need to increase the sample size by factor of 4

Sampling

13

100,000 data points
Compute the average

Take random sample of 1000 compute average
How close will sample average be to actual average?

Let s = average of the sample
 n = sample size = 1000

Standard Error = standard deviation = s/sqrt(n)

Sampling

14

Let s = average of the sample
 n = sample size = 1000

Standard Error = standard deviation = s/sqrt(n)

Confidence Interval (s - z*s/sqrt(n), s + z*s/sqrt(n))

Width of confidence interval = s + z*s/sqrt(n) - (s - z*s/sqrt(n))
 = s + z*s/sqrt(n) - s + z*s/sqrt(n)
 = z*s/sqrt(n) + z*s/sqrt(n)
 = 2z*s/sqrt(n)

Sampling

15

Confidence Interval (s - z*s/sqrt(n), s + z*s/sqrt(n))

 Sample mean (s) = 532.33

Experiment
100,000 random integer between 0 and 1000
Sample size 1,000

Confidence Interval at 95% = (499.3, 565.3)

Actual mean = 501.4

Sample Mean - Population Mean

16

-20 200

Sample Size = 1000
Number of Sample = 1000

What if we want sample to be within 10?

17

Width of confidence interval = W = 2z*s/sqrt(n)

n = 4z*2s2/W2
 = 4 * 1.962 * 501.42/102
 ≈ 39000

 502.37
 500.795
 503.108
 502.488
 499.351
 499.907
 500.791
 501.248
 501.814
 501.707
 ⋮
 504.143
 500.595

Mean of samples of size 39000

501.4

Population mean

Sample Mean - Population Mean

18

-4 42-2

Sample Size = 39000
Number of Sample = 5000

Bloom Filter

19

Burton Bloom - 1970

Space-efficient probabilistic data structure

Test whether an element is in a set

Bloom filter does not contain the elements in the set

False positive matches are possible
Possibly in set

False negatives are not possible
Definitely not in set

Types of Errors

20

False Positive (FP), type I error
Accepting a statement as true when it is not true

False Negative (FN), type II error
Accepting a statement as false when it is true

Bloom Filter - How it works

21

Empty Bloom filter
m bits all 0
k different hash functions

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bloom Filter - How it works

22

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

Insert x

x

hash1
hash2 hash3

m = 18
k = 3

Bloom Filter - How it works

23

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

y

m = 18
k = 3

Contains y?

Does not contain y

{x}

Bloom Filter - How it works

24

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

x

m = 18
k = 3

Contains x?

Possibly as all hash locations are 1

{x}

Bloom Filter - How it works

25

1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0

Insert z

z

hash1
hash2

hash3

m = 18
k = 3

{x}

Bloom Filter - How it works

26

1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0

y

m = 18
k = 3

Contains y?

Might contain y

{x, z}

Two hash functions had same value as x
One hash function had same value of z

Bloom Filter - How it works

27

Larger m
Decreases false positives
Increases table size - fewer collisions

Larger k
Decreases false positives up to a point
But fills table faster

Bloom filter for Scala

28

https://github.com/alexandrnikitin/bloom-filter-scala

// Create a Bloom filter
val expectedElements = 1000000
val falsePositiveRate = 0.1
val bf = BloomFilter[String](expectedElements, falsePositiveRate)

// Put an element
bf.add(element)

// Check whether an element in a set
bf.mightContain(element)

// Dispose the instance
bf.dispose()

Bloom Filter - Sample Uses

29

Akamai’s web servers
Some pages are only accessed once - One-hit-wonders
Only cache web page after second time it is accessed
Use bloom filter to determine if page has been seen before

Google BigTable, Apache HBase and Apache Cassandra, and Postgresql
Use Bloom filters to see if rows or columns exist
Avoid costly disk access on nonexistent rows

Google Chrome web browser
Use Bloom filter to identify malicious URLs
If filter contains the url then check server to make sure

Medium
 Uses Bloom filters to avoid recommending articles a user has previously read

Heavy Hitters Problem

30

Computing popular products
Given the page views on Amazon which products are viewed the most?

Computing frequent search queries
Given the stream of Google searches what are the popular searches
3.5 billion searches per day

View Tweets
How often are trees viewed? What the most popular tweets?

Heavy Network flows
Given packet count source and destination through switch
Where is the traffic the heaviest?
Cisco Nexus 9500 - 172.8 Tbps
Useful to detect DoS attacks

Volatile Stocks
Given stream of stock transactions which stocks are

Traded the most
Change prices the most

Streaming
Real time

Count-Min Sketch

31

Graham Cormode and S. Muthu Muthukrishnan - 2003

Consume a stream of events
Count the frequency of the different types of events in the stream
Does not store the events

Counts for each event type
Estimate of actual count
Within given range of actual count with given probability

Count-Min Sketch - How it works

32

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Initial count-min sketch

w - columns
d - rows
d different hash functions
All entries integers = 0

w determines
Interval length containing actual count

d determines
Probability that actual count is in interval

Count-Min Sketch - How it works

33

Event x

0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

x

hash1

hash2
hash3

Count-Min Sketch - How it works

34

Event y

0 1 1 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0

y

Count-Min Sketch - How it works

35

Event x

x

0 2 1 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 2 0 0 1 0

Count-Min Sketch - How it works

36

Event z

z

0 2 2 0 0 0 0 0 0 0

0 0 0 1 3 0 0 0 0 0

0 1 0 0 0 2 0 0 1 0

Count-Min Sketch - How it works

37

How often did x occur?

x

0 2 2 0 0 0 0 0 0 0

0 0 0 1 3 0 0 0 0 0

0 1 0 0 0 2 0 0 1 0

Look at counts for x in each row
Return the minimum count

