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Sampling - Motivation
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How to find mean and median of 1 Billion values?

Web browser wants to warn user when they request a known malicious website 
Could be millions of malicious websites 
Don’t want to check server for each URL 

Web Crawler 
Visit page A 
Extract all links from page A 
Repeat process on all links from page A 
How to know if you have already visited a page? 
Google indexes ~45 Billion web pages



Descriptive Statistics 
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mean 
median 
mode 
variance 
standard variation 
quantiles



Descriptive Statistics 
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mean(numbers) = sum(numbers)/length(numbers)

median 
Middle value of sorted list of numbers 
If even number of values then mean of middle two values

mean([1,7,3,8,5])  == 4.80 

median([1,7,3,8,5]) == 5.00

Arithmetic mean

mode 
Value that appears the most in the data



Descriptive Statistics 
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Variance 
Measures the spread in the numbers

Standard Deviation, (SD, s, σ) 
square root of the variance

https://en.wikipedia.org/wiki/Sigma


Quantiles
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Cutpoints that divide the sorted data into q equal sized groups

q-quantiles

4-quantile, quartile

1   1   4   7   7   8    10   15   17   17  25   26 

second quartile 
median 
Q2

first quartile 
Q1

third quartile 
Q3
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Red Bar shows middle two quartiles

White bar is median



Distributions
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Think in distributions not numbers



Normal (Gaussian) Distribution
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Normal distribution is specified by 
µ - mean, central point 
σ - standard deviation 
 



Central Limit Theorem
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Let  
X1, X2, ..., XN random sample 
SN = (X1 + ... + XN)/N 

Then as N gets large SN approximates  
the normal distribution



Area in Shaded Part
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Area Z*

99% 2.576

98% 2.326

95% 1.96

90% 1.645

µµ - z*σ µ + z*σ

Confidence Interval



Populations & Samples
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Populations - all the items 
Sample - set of representative items 

Measure
Sample 
statistic

Population 
parameter

Number of items n N

Mean x ̄ µx

Standard deviation Sx σx

Standard error  Sx̄  

Standard Error of sample = σx/sqrt(n)

Standard Error of mean (SEM)

Standard deviation of the sample-mean estimate of a population mean

Note to decrease the SE by 2 we need to increase the sample size by factor of 4



Sampling
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100,000 data points 
Compute the average 

Take random sample of 1000 compute average 
How close will sample average be to actual average?

Let   s = average of the sample 
 n = sample size = 1000

Standard Error = standard deviation = s/sqrt(n)



Sampling
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Let   s = average of the sample 
 n = sample size = 1000

Standard Error = standard deviation = s/sqrt(n)

Confidence Interval   (s -  z*s/sqrt(n), s + z*s/sqrt(n) )

Width of confidence interval = s + z*s/sqrt(n) - (s -  z*s/sqrt(n)) 
      = s + z*s/sqrt(n) - s +  z*s/sqrt(n) 
      = z*s/sqrt(n) +  z*s/sqrt(n) 
      = 2z*s/sqrt(n)



Sampling
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Confidence Interval   (s -  z*s/sqrt(n), s + z*s/sqrt(n) )

 Sample mean (s) = 532.33

Experiment 
100,000 random integer between 0 and 1000 
Sample size 1,000

Confidence Interval at 95% = (499.3, 565.3)

Actual mean = 501.4



Sample Mean - Population Mean
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-20 200

Sample Size = 1000 
Number of Sample = 1000



What if we want sample to be within 10?
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Width of confidence interval = W = 2z*s/sqrt(n)

n = 4z*2s2/W2 
   = 4 * 1.962 * 501.42/102 
   ≈ 39000

 502.37  
 500.795 
 503.108 
 502.488 
 499.351 
 499.907 
 500.791 
 501.248 
 501.814 
 501.707 
   ⋮     
 504.143 
 500.595 

Mean of samples of size 39000

501.4

Population mean



Sample Mean - Population Mean

18

-4 42-2

Sample Size = 39000 
Number of Sample = 5000



Bloom Filter
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Burton Bloom - 1970

Space-efficient probabilistic data structure

Test whether an element is in a set 

Bloom filter does not contain the elements in the set

False positive matches are possible 
Possibly in set 

False negatives are not possible 
Definitely not in set



Types of Errors
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False Positive (FP), type I error 
Accepting a statement as true when it is not true 

False Negative (FN), type II error 
Accepting a statement as false when it is true



Bloom Filter - How it works
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Empty Bloom filter 
m bits all 0 
k different hash functions

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Bloom Filter - How it works
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0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

Insert x

x

hash1
hash2 hash3

m = 18 
k  = 3



Bloom Filter - How it works
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0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

y

m = 18 
k  = 3

Contains y?

Does not contain y

{x}



Bloom Filter - How it works
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0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

x

m = 18 
k  = 3

Contains x?

Possibly as all hash locations are 1

{x}



Bloom Filter - How it works
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1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0

Insert z

z

hash1
hash2

hash3

m = 18 
k  = 3

{x}



Bloom Filter - How it works

26

1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0

y

m = 18 
k  = 3

Contains y?

Might contain y

{x, z}

Two hash functions had same value as x 
One hash function had same value of z



Bloom Filter - How it works
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Larger m  
Decreases false positives 
Increases table size - fewer collisions 

Larger k  
Decreases false positives up to a point 
But fills table faster



Bloom filter for Scala
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https://github.com/alexandrnikitin/bloom-filter-scala

// Create a Bloom filter 
val expectedElements = 1000000 
val falsePositiveRate = 0.1 
val bf = BloomFilter[String](expectedElements, falsePositiveRate) 

// Put an element 
bf.add(element) 

// Check whether an element in a set 
bf.mightContain(element) 

// Dispose the instance 
bf.dispose()



Bloom Filter - Sample Uses
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Akamai’s web servers 
Some pages are only accessed once - One-hit-wonders 
Only cache web page after second time it is accessed 
Use bloom filter to determine if page has been seen before

Google BigTable, Apache HBase and Apache Cassandra, and Postgresql 
Use Bloom filters to see if rows or columns exist 
Avoid costly disk access on nonexistent rows

Google Chrome web browser 
Use Bloom filter to identify malicious URLs 
If filter contains the url then check server to make sure

Medium 
 Uses Bloom filters to avoid recommending articles a user has previously read



Heavy Hitters Problem
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Computing popular products 
Given the page views on Amazon which products are viewed the most?

Computing frequent search queries 
Given the stream of Google searches what are the popular searches 
3.5 billion searches per day

View Tweets 
How often are trees viewed? What the most popular tweets?

Heavy Network flows 
Given packet count source and destination through switch  
Where is the traffic the heaviest? 
Cisco Nexus 9500 - 172.8 Tbps 
Useful to detect DoS attacks  

Volatile Stocks 
Given stream of stock transactions which stocks are  

Traded the most 
Change prices the most 

Streaming 
Real time



Count-Min Sketch
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Graham Cormode and S. Muthu Muthukrishnan - 2003

Consume a stream of events 
Count the frequency of the different types of events in the stream 
Does not store the events

Counts for each event type 
Estimate of actual count 
Within given range of actual count with given probability



Count-Min Sketch - How it works
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Initial count-min sketch

w - columns 
d - rows 
d different hash functions 
All entries integers = 0

w determines  
Interval length containing actual count 

d determines 
Probability that actual count is in interval



Count-Min Sketch - How it works

33

Event x

0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

x

hash1

hash2
hash3



Count-Min Sketch - How it works
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Event y

0 1 1 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0

y



Count-Min Sketch - How it works
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Event x

x

0 2 1 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 2 0 0 1 0



Count-Min Sketch - How it works
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Event z

z

0 2 2 0 0 0 0 0 0 0

0 0 0 1 3 0 0 0 0 0

0 1 0 0 0 2 0 0 1 0



Count-Min Sketch - How it works
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How often did x occur?

x

0 2 2 0 0 0 0 0 0 0

0 0 0 1 3 0 0 0 0 0

0 1 0 0 0 2 0 0 1 0

Look at counts for x in each row 
Return the minimum count


