CS 696 Intro to Big Data: Tools and Methods Fall Semester, 2017
 Doc 6 Sampling Sep 11, 2017

Copyright ©, All rights reserved. 2017 SDSU \& Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license defines the copyright on this document.

Sampling - Motivation

How to find mean and median of 1 Billion values?

Web browser wants to warn user when they request a known malicious website
Could be millions of malicious websites
Don't want to check server for each URL

Web Crawler
Visit page A
Extract all links from page A
Repeat process on all links from page A
How to know if you have already visited a page?
Google indexes ~ 45 Billion web pages

Descriptive Statistics

mean
median
mode
variance
standard variation
quantiles

Descriptive Statistics

Arithmetic mean

```
mean(numbers) \(=\) sum(numbers)/length(numbers)
\[
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\]
```

median
Middle value of sorted list of numbers
If even number of values then mean of middle two values

$$
\operatorname{median}([1,7,3,8,5])==5.00
$$

mode
Value that appears the most in the data

Descriptive Statistics

Variance
Measures the spread in the numbers

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Standard Deviation, (SD, s, б)
square root of the variance

Quantiles

q-quantiles

Cutpoints that divide the sorted data into q equal sized groups

4-quantile, quartile

$$
\begin{array}{llllllllllll}
1 & 1 & 4 & 7 & 7 & 8 & 10 & 15 & 17 & 17 & 25 & 26
\end{array}
$$

first quartile
Q1
third quartile
Q3
second quartile
median
Q2

Red Bar shows middle two quartiles

White bar is median

Distributions

Think in distributions not numbers

Normal (Gaussian) Distribution

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \sigma^{2} \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Normal distribution is specified by
μ - mean, central point
σ - standard deviation

Central Limit Theorem

Let

$X_{1}, X_{2}, \ldots, X_{N}$ random sample
$S_{N}=\left(X_{1}+\ldots+X_{N}\right) / N$

Then as N gets large S_{N} approximates
the normal distribution

Area in Shaded Part

Area	Z^{*}
99%	2.576
98%	2.326
95%	1.96
90%	1.645

Populations \& Samples

Populations - all the items
Sample - set of representative items

Standard Error of sample $=\sigma_{\chi} /$ sqrt(n)
Standard Error of mean (SEM)

Measure	Sample statistic	Population parameter
Number of items	n	N
Mean	$\overline{\mathrm{x}}$	μ_{X}
Standard deviation	S_{X}	σ_{x}
Standard error	$\mathrm{S}_{\overline{\mathrm{x}}}$	

Standard deviation of the sample-mean estimate of a population mean

Note to decrease the SE by 2 we need to increase the sample size by factor of 4

Sampling

100,000 data points
Compute the average

Take random sample of 1000 compute average How close will sample average be to actual average?

Let $s=$ average of the sample
$\mathrm{n}=$ sample size $=1000$

Standard Error $=$ standard deviation $=\mathrm{s} / \mathrm{sqrt}(\mathrm{n})$

Sampling

Let $s=$ average of the sample
$\mathrm{n}=$ sample size $=1000$

Standard Error $=$ standard deviation $=$ s/sqrt(n)

Confidence Interval (s - z*s/sqrt(n), s + z*s/sqrt(n))

Width of confidence interval $=s+z^{*} s / s q r t(n)-\left(s-z^{*} s / s q r t(n)\right)$

$$
\begin{aligned}
& =s+z^{*} s / s q r t(n)-s+z^{*} s / s q r t(n) \\
& =z^{*} s / \operatorname{sqrt}(n)+z^{*} s / \operatorname{sqrt}(n) \\
& =2 z^{*} s / \operatorname{sqrt}(n)
\end{aligned}
$$

Sampling

Confidence Interval (s - z*s/sqrt(n), s + z*s/sqrt(n))
Experiment
100,000 random integer between 0 and 1000
Sample size 1,000

Sample mean (s) $=532.33$

Confidence Interval at $95 \%=(499.3,565.3)$

Actual mean $=501.4$

Sample Mean - Population Mean

Sample Size $=1000$
Number of Sample $=1000$

What if we want sample to be within $10 ?$

Width of confidence interval $=\mathrm{W}=2 \mathrm{z}^{*} \mathrm{~s} / \mathrm{sqrt}(\mathrm{n})$

$$
\begin{aligned}
\mathrm{n} & =4 \mathrm{z}^{* 2} \mathrm{~s}^{2} / \mathrm{W}^{2} \\
& =4 * 1.96^{2} * 501.4^{2} / 10^{2} \\
& \approx 39000
\end{aligned}
$$

Mean of samples of size 39000

```
502.37
500.795
503.108
    Population mean
    501.4
502.488
4 9 9 . 3 5 1
4 9 9 . 9 0 7
500.791
501.248
501.814
501.707
504.143
500 505
```


Sample Mean - Population Mean

Sample Size $=39000$
Number of Sample $=5000$

Bloom Filter

Burton Bloom - 1970

Space-efficient probabilistic data structure

Test whether an element is in a set

Bloom filter does not contain the elements in the set

False positive matches are possible
Possibly in set

False negatives are not possible
Definitely not in set

Types of Errors

False Positive (FP), type I error
Accepting a statement as true when it is not true

False Negative (FN), type II error
Accepting a statement as false when it is true

Bloom Filter - How it works

Empty Bloom filter

m bits all 0
k different hash functions

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bloom Filter - How it works
 $$
\begin{aligned} & \mathrm{m}=18 \\ & \mathrm{k}=3 \end{aligned}
$$

Insert x

Bloom Filter - How it works

Contains y ?

$$
m=18
$$

$$
k=3
$$

$\{x\}$

Bloom Filter - How it works

Contains x ?

$$
\begin{aligned}
& \mathrm{m}=18 \\
& \mathrm{k}=3
\end{aligned}
$$

$$
\{x\}
$$

Bloom Filter - How it works
 $$
m=18
$$
 $$
k=3
$$
 Insert z
 \{x\}

Bloom Filter - How it works

Contains y ?

$$
\begin{aligned}
& \mathrm{m}=18 \\
& \mathrm{k}=3
\end{aligned}
$$

$$
\{x, z\}
$$

Two hash functions had same value as x
One hash function had same value of z

Bloom Filter - How it works

Larger m

Decreases false positives
Increases table size - fewer collisions

Larger k
Decreases false positives up to a point
But fills table faster

Bloom filter for Scala

https://github.com/alexandrnikitin/bloom-filter-scala

```
// Create a Bloom filter
val expectedElements = 1000000
val falsePositiveRate = 0.1
val bf = BloomFilter[String](expectedElements, falsePositiveRate)
// Put an element
bf.add(element)
// Check whether an element in a set
bf.mightContain(element)
// Dispose the instance
bf.dispose()
```


Bloom Filter - Sample Uses

Akamai's web servers
Some pages are only accessed once - One-hit-wonders
Only cache web page after second time it is accessed
Use bloom filter to determine if page has been seen before
Google BigTable, Apache HBase and Apache Cassandra, and Postgresql
Use Bloom filters to see if rows or columns exist
Avoid costly disk access on nonexistent rows

Google Chrome web browser
Use Bloom filter to identify malicious URLs
If filter contains the url then check server to make sure

Medium

Uses Bloom filters to avoid recommending articles a user has previously read

Heavy Hitters Problem

Computing popular products
Given the page views on Amazon which products are viewed the most?
Computing frequent search queries
Given the stream of Google searches what are the popular searches
3.5 billion searches per day

View Tweets
How often are trees viewed? What the most popular tweets?

Heavy Network flows
Given packet count source and destination through switch
Where is the traffic the heaviest?
Cisco Nexus 9500-172.8 Tbps
Useful to detect DoS attacks

Volatile Stocks
Given stream of stock transactions which stocks are
Traded the most
Change prices the most

Count-Min Sketch

Graham Cormode and S. Muthu Muthukrishnan - 2003

Consume a stream of events
Count the frequency of the different types of events in the stream Does not store the events

Counts for each event type
Estimate of actual count
Within given range of actual count with given probability

Count-Min Sketch - How it works

Initial count-min sketch
w- columns
d-rows
d different hash functions
All entries integers $=0$
w determines
Interval length containing actual count
d determines
Probability that actual count is in interval

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Count-Min Sketch - How it works

Event x

Count-Min Sketch - How it works

Event y

Count-Min Sketch - How it works

Event x

Count-Min Sketch - How it works

Event z

Count-Min Sketch - How it works

How often did x occur?
Look at counts for x in each row Return the minimum count

