
CS 696 Intro to Big Data: Tools and Methods
Fall Semester, 2017

Doc 10 Word Count, Hadoop
Oct 4, 2017

Copyright ©, All rights reserved. 2017 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

Word Count - Hello World of Hadoop

2

Given a text file
Count the number of times each word occurs in the file

Examples do not worry about
What a word is
Different endings to same word
Words hyphenated at end of sentences

Sequential Algorithm

3

“a cat a bat a cat hat”

“a", "cat", "a", "bat", "a", "cat", “hat"

a -> 1
a -> 1

cat -> 1
a -> 2

cat -> 1

a -> 2
cat -> 1
bat -> 1

a -> 3
cat -> 1
bat -> 1

a -> 3
cat -> 2
bat -> 1

a -> 3
cat -> 2
bat -> 1
hat -> 1

Spark/Hadoop Algorithm

4

“a cat a bat a cat hat”

“a cat a” “cat hat”“bat a”

“a", "cat", "a" "bat", "a" "cat", “hat"

(“a”, 1), (“cat", 1), ("a", 1) ("bat", 1), ("a", 1) ("cat", 1), (“hat", 1)

(“a”,2), (“cat", 1) ("bat", 1), ("a", 1) ("cat", 1), (“hat", 1)

M1 M2 M3

(“cat", 2) ("a", 3) ("bat", 1), (“hat", 1)

split

map

reduceByKey

shuffle

Word Count

5

val textFile = sc.textFile("words.txt")
val counts = textFile.flatMap(line => line.split(" ")).
 map(word => (word, 1)).
 reduceByKey(_ + _)
counts.saveAsTextFile("counts")

Scala

JavaRDD<String> textFile = sc.textFile("hdfs://...");
JavaPairRDD<String, Integer> counts = textFile
 .flatMap(s -> Arrays.asList(s.split(" ")).iterator())
 .mapToPair(word -> new Tuple2<>(word, 1))
 .reduceByKey((a, b) -> a + b);
counts.saveAsTextFile("hdfs://...");

Java

Why Flatmap

6

“A cat in the
hat returns”

TextFile

(“A cat in the”,
 “hat returns”)

Read as Lines

((“A”, “cat”, “in”, “the”),
 (“hat”, “returns”))

map(line => line.split(" "))

(“A”, “cat”, “in”, “the”, “hat”, “returns”)

flatMap(line => line.split(" "))

Shuffle

7

What is Hadoop

8

Framework for distributed storage & distributed processing of very large data sets

Hadoop Common
Utilities

Hadoop Distributed File System (HDFS)

Hadoop YARN
Manage computing resources in clusters & schedule users' applications

Hadoop MapReduce
Implementation of the MapReduce programming model

What is Hadoop

9

Java program + native C code + shell scripts

Java Jar file

Native Libraries

10

16/11/02 09:12:16 WARN util.NativeCodeLoader: Unable to load native-hadoop library
for your platform... using builtin-java classes where applicable

For performance some components of hadoop have native libraries
Compression (bzip2, lz4, snappy, zlib)
Native io utilities
CRC32 checksum

Only on GNU/Linux
RHEL4/Fedora
Unbuntu
Gentoo

On other systems uses Java implementation

Hadoop Distributed Filesystem HDFS

11

Parts of a file are distributed on different machine

Large files - 100 MB, GB or TB
File block size - 128MB or larger for efficient transfer

Streaming data access
Copy to HDSF once
Read many times

Handles node failure

High-latency access

Single Writer, append only

Namenode & Datanodes

12

Namenode
master
Manages filesystem

Filesystem tree & metadata for files * directories
Clients interact with namenode
Cluster may contain multiple namenodes

Federation
Divide namespace up if too many files

High Availability
Backup if main namenode fails

Datanode
worker
Reads file blocks
Reports to name node which blocks it contains

Datanode fails

13

Each block of a file is stored on multiple machines

This is set in conf file

For standalone & Pseudo distributed set to 1

Hadoop WordCount

14

Map
Function in subclass of Mapper

Reduce
Function is subclass of Reducer

Main
Configures and runs hadoop job

Map

15

 public static class TokenizerMapper
 extends Mapper<Object, Text, Text, IntWritable>{

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
 }

Reduce

16

 public static class IntSumReducer
 extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context
) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
 }
 }

Main - Driver Program

17

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }

Hadoop Ecosystem

18

Hadoop
HDFS
MapReduce
YARN

Tez
Pig
Hive
Hbase
Sqoop
Oozie
Falcon
Spark
ZooKeeper
Mahout
Phoenix
BigTop
+ others

Apache Pig

19

Programming Map-Reduce can be low level

Apache Pig - high-level platform for creating programs for Hadoop

Pig Latin

 input_lines = LOAD '/tmp/my-copy-of-all-pages-on-internet' AS (line:chararray);
 words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) AS word;
 filtered_words = FILTER words BY word MATCHES '\\w+';
 word_groups = GROUP filtered_words BY word;
 word_count = FOREACH word_groups GENERATE COUNT(filtered_words) AS
 count, group AS word;

 ordered_word_count = ORDER word_count BY count DESC;
 STORE ordered_word_count INTO '/tmp/number-of-words-on-internet';

Apache Hive

20

SQL is common way to interact with data

Hive provides SQL like query language for HDFS, Amazon S3 data

HiveQL - converted into MapReduce

DROP TABLE IF EXISTS docs;
CREATE TABLE docs (line STRING);
LOAD DATA INPATH 'input_file' OVERWRITE INTO TABLE docs;
CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
 (SELECT explode(split(line, '\s')) AS word FROM docs) temp
GROUP BY word
ORDER BY word;

Apache HBase

21

BigTable for Hadoop

Non-relational distributed database

Fault-tolerant way of storing large quantites of sparse data

Apache Sqoop

22

People have data in non-hadoop databases

Sqoop
Transferring data between relational databases & Hadoop

Apache Phoenix

23

But SQL is common

Phoenix
Massively parallel relational database for Hadoop
Uses HBase to store data

Apache Spark

24

Hadoop has latency issues - reads data from disk
MapReduce is not conducive to solving all problems

Spark
Uses distributed shared memory: Resilient distributed dataset (RDD)
Iterative algorithms
Implemented in Scala

Spark Core
Spark SQL

Dataframes & SQL
Spark Streaming
Spark MLlib

Machine learning

Apache Mahout

25

Hadoop does not have machine learning libraries

Mahout
Environment for quickly creating scalable machine learning applications
Samsara - R-line syntax & environment

Apache Flink, Apache Storm

26

Hadoop does batch jobs
Spark streaming has delays

Fling & Storm
Each calin to have high throughput and low latency streaming

