
CS 635 Advanced OO Design and Programming
Fall Semester, 2018

Assignment 3
© 2018, All Rights Reserved, SDSU & Roger Whitney

 San Diego State University -- This page last updated 9/13/18

Assignment 3
Turtle Programs

Due Oct 16

We are going to implement part of a program to implement turtle graphics. See the wikipedia
article on turtle graphics (http://en.wikipedia.org/wiki/Turtle_graphics) if you are unfamiliar with
turtle graphics. We will support the turtle moving, turning, and raising/lowering a pen to draw.
We will not support changing the color of the pen. The goal is to create a small language that
kids can use to program the turtle. We will not implement the graphics part of the program. We
are just interested in the section of the program that interprets the language. The language is
given below.

Mini Turtle Language

The turtle language consists of the following commands.

penUp
When the pen is up and the turtle moves nothing is drawn.

penDown
When the pen is down and the turtle moves a black line is drawn

move X
Move the turtle X units in the current direction. X is a positive integer.

turn X
Turn the direction of the turtle X degrees.

repeat k
statement1
statement2
...
statementJ

end
k is an integer. The statements inside the repeat block are any legal statement in
the language. the repeat statement has the obvious semantics.

#K = Y

Y is an integer. The variable $K can be used in move, turn and repeat com-
mands.

Page � of �1 4

When a program starts the turtle is in the middle of the screen headed horizontally right (zero
degrees) and the pen is up. Here are two sample turtle programs which draw a square.

#side = 15
penDown
move #side
turn 90
move #side
turn 90
move #side
turn 90
move #side

Nearly the same program using the repeat statement.

#side= 10
penDown
repeat 4

move $length
turn 90

end

Turtle Class

The full program will have a Turtle class that draws on the screen. The Turtle class has fields
to hold the current direction (in degrees) of the turtle and the current location (X & Y coordi-
nates). The class has the following methods.

void move(int distance)
Move the turtle distance units in the current direction and draw on the screen if
the pen is down.

void turn(int degrees)
Add “degrees” to the current heading of the turtle.

void penUp()
Lift the pen up.

void penDown()
Put the pen down.

boolean isPenUp()
Return true if pen is up, false if the pen is down.

int direction()
Returns the current direction of the turtle.

Point location()
Returns the current location of the turtle.

Our goal to is to be able to read and execute a turtle program. The focus is not on the graphics
part. So we will create a mock Turtle class that has the same fields and methods as the turtle

Page � of �2 4

class but will not draw on the screen. All the methods perform the same operation as the real
Turtle class except for the move method. This will allow us to test our code without having to
draw on the screen.

void move(int distance)
Move the turtle distance units in the current direction and updates the field(s) in-
dicating the current location of the turtle. The method does not draw on the
screen.

Geometry & Computing New Location

The turtle starts at the location (0, 0), which if we were going to draw on the screen would be in
the center of the screen. The turtle also starts with a direction of zero degrees with the pen up.
A direction of 0 degrees is to the right parallel to the X-axis. A direction of 90 degrees is straight
up parallel to the Y-axis. A direction of -270 degrees is also the same as a direction of 90 de-
grees.

Now if the turtle is at (10,20), heading in a direction of 30 degrees and travels 15 units how do
we compute where it ends up? First we have to convert the degrees to radians via the formula:

 radians = degrees * pi / 180

Then we can get the deltaX and deltaY using:

deltaX = cosine(radians) * distance
deltaY = sine(radians) * distance

So in our example we get

x = 10
y = 20
degrees = 30
distance = 15
radians = pi*degrees/180 => 0.5236
deltaY = sin(radians) * distance => 7.5 deltaX = cos(radians) * distance => 12.9904
newX = x + deltaX => 22.9904
newY = y + deltaY => 27.5
So the turtle will end up at (22.99, 27.5)

The Assignment

1. Using the interpreter pattern we want to be able to read a text file containing a turtle pro-
gram and represent the program as abstract syntax trees which we can execute. So if our file
contained the following program after Reading and executing the program the turtle would end
up at (22.99, 27.5).

move 10
turn 90
move 20
turn -60
move 15

Page � of �3 4

2. The problem with using the abstract syntax trees to execute the program is that the program
cannot be stopped or reversed. It is often useful to step through a program. So use the visitor
pattern so we can send a visitor to the parts of the program. After which the visitor can return a
list of memento object, one for each time the turtle changes state. One then can step through
the program by using the list of mementos to change the state of the turtle as happened when
running the program. (Note the command pattern might be better here but assignment 2 used
the command pattern.)

3. Create a second visitor that will compute the total distance traveled by the turtle. So for ex-
ample given the program below the visitor would compute the distance of 20 even though the
turtle would end up where it started.

move 10
turn 180
move 10

 Grading

Item Points
Working Code 10
Unit Tests 10
Proper implementation of Patterns 20 per Pattern (60 points total)
Quality of Code 10

Page � of �4 4

