
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2018

Doc 9 Composite, Pattern Intro, Coupling
Oct 2, 2018

Copyright ©, All rights reserved. 2018 SDSU & Roger
Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700
USA. OpenContent (http://www.opencontent.org/opl.shtml)
license defines the copyright on this document.

http://www.opencontent.org/opl.shtml

 2

Composite

Composite Motivation

 3

How does the window hold and deal with the different items it has to manage?

Widgets are different that WidgetContainers

Bad News

 4

class Window {
 Buttons[] myButtons;
 Menus[] myMenus;
 TextAreas[] myTextAreas;
 WidgetContainer[] myContainers;
 public void update() {
 if (myButtons != null)
 for (int k = 0; k < myButtons.length(); k++)
 myButtons[k].refresh();
 if (myMenus != null)
 for (int k = 0; k < myMenus.length(); k++)
 myMenus[k].display();
 if (myTextAreas != null)
 for (int k = 0; k < myButtons.length(); k++)
 myTextAreas[k].refresh();
 if (myContainers != null)
 for (int k = 0; k < myContainers.length(); k++)
 myContainers[k].updateElements();
 etc.
 }
 public void fooOperation(){
 if (myButtons != null)
 etc.

An Improvement

 5

class Window {
 GUIWidgets[] myWidgets;
 WidgetContainer[] myContainers;

 public void update(){
 if (myWidgets != null)
 for (int k = 0; k < myWidgets.length(); k++)
 myWidgets[k].update();
 if (myContainers != null)
 for (int k = 0; k < myContainers.length(); k++)
 myContainers[k].updateElements();
 etc.
 }
}

Composite Pattern

 6

Component

WidgetOperation()

Button Menu TextArea WidgetContainer

components

ContainerOperation()

Composite Pattern

 7

Component implements default behavior for widgets when possible

Button, Menu, etc overrides Component methods when needed

WidgetContainer will have to overrides all widgetOperations

class WidgetContainer {
 Component[] myComponents;

 public void update() {
 if (myComponents != null)
 for (int k = 0; k < myComponents.length(); k++)
 myComponents[k].update();
 }
}

Issue - WidgetContainer Operations

 8

Should the WidgetContainer operations be declared in Component?

Pro - Transparency
Declaring them in the Component gives all subclasses the same interface

All subclasses can be treated alike. (?)

Con - Safety
Declaring them in WidgetContainer is safer

Adding or removing widgets to non-WidgetContainers is an error

One out is to check the type of the object before using a WidgetContainer operation

Issue - Parent References

 9

class WidgetContainer
 {
 Component[] myComponents;

 public void update() {
 if (myComponents != null)
 for (int k = 0; k < myComponents.length(); k++)
 myComponents[k].update();
 }

 public add(Component aComponent) {
 myComponents.append(aComponent);
 aComponent.setParent(this);
 }
}

class Button extends Component {
 private Component parent;
 public void setParent(Component myParent) {
 parent = myParent;
 }

 etc.

More Issues

 10

Should Component implement a list of Components?

 The button etc. will have a useless data member

Child ordering is important in some cases

Who should delete components?

Applicability

 11

Use Composite pattern when you want

 To represent part-whole hierarchies of objects

 Clients to be able to ignore the difference between
compositions of objects and individual objects

 12

Pattern Intro

Pattern Beginnings

 13

"Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice"

"Each pattern is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution"

A Pattern Language, Christopher Alexander, 1977

A Place To Wait

 14

The process of waiting has inherent conflicts in it.

Waiting for doctor, airplane etc. requires spending time hanging around doing nothing

Cannot enjoy the time since you do not know when you must leave

Classic "waiting room"
Dreary little room
People staring at each other
Reading a few old magazines
Offers no solution

Fundamental problem
How to spend time "wholeheartedly" and
Still be on hand when doctor, airplane etc arrive

Fuse the waiting with other activity that keeps them in earshot
 Playground beside Pediatrics Clinic
 Horseshoe pit next to terrace where people waited

Allow the person to become still meditative
 A window seat that looks down on a street
 A protected seat in a garden
 A dark place and a glass of beer
 A private seat by a fish tank

A Place To Wait

 15

Therefore:

"In places where people end up waiting create a situation which makes the
waiting positive. Fuse the waiting with some other activity - newspaper, coffee,
pool tables, horseshoes; something which draws people in who are not simple
waiting. And also the opposite: make a place which can draw a person waiting
into a reverie; quiet; a positive silence"

Chicken And Egg

 16

Problem

Two concepts are each a prerequisite of the other
To understand A one must understand B
To understand B one must understand A
A "chicken and egg" situation

Constraints and Forces

First explain A then B
 Everyone would be confused by the end

Simplify each concept to the point of incorrectness to explain the other one
 People don't like being lied to

Solution

Explain A & B correctly by superficially

Iterate your explanations with more detail in each iteration

Patterns for Classroom Education, Dana Anthony, pp. 391-406, Pattern Languages of Program Design 2, Addison Wesley,
1996

Design Principle 1

 17

Program to an interface, not an implementation

Use abstract classes (and/or interfaces in Java) to define common interfaces for a set of classes

Declare variables to be instances of the abstract class not instances of particular classes

Benefits of programming to an interface

Client classes/objects remain unaware of the classes of objects they use,
as long as the objects adhere to the interface the client expects

Client classes/objects remain unaware of the classes that implement these objects.
Clients only know about the abstract classes (or interfaces) that define the interface.

Programming to an Interface

 18

Collection

Set List

SortedSet HashSet

TreeSet ArrayList LinkedList

Vector

Map

SortedMapHashMap

TreeMap

Hashtable

Class

Interface

Implements

Extends

WeakHashMap

Collection students = new XXX;
students.add(aStudent);

students can be any collection type

We can change our mind on what type to use

Interface & Duck Typing

 19

In dynamically typed languages programming to an interface is the norm

Dynamically typed languages tend to lack a way to declare an interface

Design Principle 2

 20

Favor object composition over class inheritance

Composition
 Allows behavior changes at run time
 Helps keep classes encapsulated and focused on one task
 Reduce implementation dependencies

Inheritance
class A {
 Foo x
 public int complexOperation() { blah }
}

class B extends A {
 public void bar() { blah}
}

Composition
class B {
 A myA;
 public int complexOperation() {
 return myA.complexOperation()
 }

 public void bar() { blah}
}

Designing for Change

 21

Algorithmic dependencies
 Builder, Iterator, Strategy,

 Template Method, Visitor

Inability to alter classes conveniently
 Adapter, Decorator, Visitor

Dependence on specific operations
 Chain of Responsibility, Command

Dependence on hardware and software platforms
 Abstract factory, Bridge

Tight Coupling
 Abstract factory, Bridge, Chain of Responsibility,
 Command, Facade, Mediator, Observer

Extending functionality by subclassing
 Bridge, Chain of Responsibility, Composite,
 Decorator, Observer, Strategy

Extending functionality by subclassing
 Bridge, Chain of Responsibility, Composite,
 Decorator, Observer, Strategy

Dependence on object representations or implementations
 Abstract factory, Bridge, Memento, Proxy

Creating an object by specifying a class explicitly
 Abstract factory, Factory Method, Prototype

Kent Beck's Rules for Good Style

 22

One and only once

In a program written in good style, everything is said once and only once

Methods with the same logic
Objects with same methods
Systems with similar objects

 rule is not satisfied

Lots of little Pieces

 23

"Good code invariably has small methods and small objects"

Small pieces are needed to satisfy "once and only once"

Make sure you communicate the big picture or you get a mess

Rates of change

 24

Don't put two rates of change together

An object should not have a field that changes every second & a field that
change once a month

A collection should not have some elements that are added/removed every
second and some that are add/removed once a month

An object should not have code that has to change for each piece of
hardware and code that has to change for each operating system

Replacing Objects

 25

Good style leads to easily replaceable objects

"When you can extend a system solely by adding new objects without
modifying any existing objects, then you have a system that is flexible and
cheap to maintain"

Moving Objects

 26

"Another property of systems with good style is that their objects can be
easily moved to new contexts"

 27

Coupling

In the Beginning

 28

Parnas (72) KWIC (Simple key word in context) experiment

 Read lines of words
 Output all circular shifts of all lines in alphabetical order
 Circular shift
 remove first word of line and add it to the end of the line

KWIC Solutions

 29

Solution 1
Each major step in processing is a
module

Create flowchart and make each
major part a module

Solution 2
Modules based on design decisions

List design decisions that are
 Difficult
 Likely to change

Each module should hide a design decision

Solution 1
More complex
Harder to understand
Much harder to modify

Metrics for Quality

 30

Coupling

Strength of interaction between objects in system

Cohesion

Degree to which the tasks performed by a single module are functionally
related

Coupling

 31

Measure of the interdependence among modules

"Unnecessary object coupling needlessly decreases the reusability of
the coupled objects"

"Unnecessary object coupling also increases the chances of system
corruption when changes are made to one or more of the coupled
objects"

Design Goal

The interaction or other interrelationship between any two
components at the same level of abstraction within the system be as
weak as possible

Types of Modular Coupling

 32

Data Coupling (weakest – most desirable)

Control Coupling

Global Data Coupling

Internal Data Coupling (strongest – least
desirable)

Content Coupling (Unrated)

Data Coupling

 33

Output from one module is the input to another
Using parameter lists to pass items between routines

Common Object Occurrence

Object A passes object X to object B
Object X and B are coupled
A change to X's interface may require a change to B

Example

class ObjectBClass{
 public void message(ObjectXClass X){
 // code goes here
 X.doSomethingForMe(Object data);
 // more code
 }
}

Data Coupling

 34

Problem

Object A passes object X to object B
X is a compound object
Object B must extract component object Y out of X

B, X, internal representation of X, and Y are coupled

public class HiddenCoupling {
 public bar someMethod(SomeType x) {
 AnotherType y = x.getY();
 y.foo();
 blah;
 }
}

Example – Sorting

 35

How to write a general purpose sort
Sort the same list by
 ID
 Name
 Grade

class StudentRecord {
 Name lastName;
 Name firstName;
 long ID;

 public Name getLastName() { return lastName; }
 // etc.
}

SortedList cs635 = new SortedList();
StudentRecord newStudent;
//etc.
cs535.add (newStudent);

Attempt 1

 36

class SortedList
 {
 Object[] sortedElements = new Object[properSize];

 public void add(StudentRecord X)
 {
 // coded not shown
 String a = X.getName();
 String b = sortedElements[K].getName();
 if (a.lessThan(b))
 // do something
 else
 // do something else
 }
 }

Attempt 1

 37

class SortedList
 {
 Object[] sortedElements = new Object[properSize];

 public void add(StudentRecord X)
 {
 // coded not shown
 Name String a = X.getName();
 Name String b = sortedElements[K].getName();
 if (a.lessThan(b))
 // do something
 else
 // do something else
 }
 }

Attempt 2

 38

class SortedList{
 Object[] sortedElements = new Object[properSize];

 public void add(StudentRecord X) {
 // coded not shown
 if (X.lessthan(sortedElements[K]))
 // do something
 else
 // do something else
 }
}

class StudentRecord{
 private Name lastName;
 private long ID;

 public boolean lessThan(Object compareMe) {
 return lastName.lessThan(compareMe.lastName);
 }
 etc.
}

Attempt 3

 39

interface Comparable {
 public boolean lessThan(Object compareMe);
 public boolean greaterThan(Object compareMe);
 public boolean equal(Object compareMe);
}

class SortedList {
 Comparable[] sortedElements = new Object[properSize];

 public void add(Comparable X) {
 // coded not shown
 if (X.lessthan(sortedElements[K])
 // do something
 else
 // do something else
 }
 }

class StudentRecord implements Comparable {
 blah
 public boolean lessThan(Object compareMe) {
 return lastName.lessThan(((Name)compareMe).lastName);
 }
}

Attempt 4

 40

interface Comparing {
 public boolean lessThan(Object a, Object b);
 public boolean greaterThan(Object a, Object b);
 public boolean equal(Object a, Object b);
}

class SortedList {
 Object[] sortedElements = new Object[properSize];
 Comparing comparer;
 public SortedList(Comparing y) {comparer = y;}

 public void add(Object X) {
 // coded not shown
 if (comparer.lessthan(sortedElements[K], X)
 // do something
 else
 // do something else
 }
 }

Attempt 4

 41

class ByName implements Comparing {
 public boolean lessThan(Object a, Object b) {
 return ((Student) a).lastName() < ((Student) b).lastName();
 }
 etc.
}

class ByID implements Comparing {
 public boolean lessThan(Object a, Object b) {
 return ((Student) a).id() < ((Student) b).id();
 }
 etc.
}

SortedList byName = new SortedList(new ByName());
SortedList byID = new SortedList(new ById());

Java 8 Solution

 42

class SortedList<T> {
 T[] sortedElements = new T[properSize];
 Comparator<T> comparer;
 public SortedList(Comparator<T> y) {comparer = y;}

 public void add(Object X) {
 // coded not shown
 if ((comparer.compare(sortedElements[K], X) < 0)
 // do something
 else
 // do something else
 }
 }

interface Comparator<T> { int compare(T o1, T o2) }

http://download.java.net/jdk8/docs/api/java/util/Comparator.html
http://download.java.net/jdk8/docs/api/java/util/Comparator.html

Java 8 Solution

 43

SortedList byName = new SortedList((a, b) -> a.lastName() < b.name());

SortedList byID = new SortedList((a, b) -> a.id() < b.id());

Functor Pattern

 44

Functors are functions that behave like objects

They serve the role of a function, but can be created, passed as parameters,
and manipulated like objects

A functor is a class with a single member function

Types of Coupling

 45

Data Coupling (weakest – most desirable)

Control Coupling

Global Data Coupling

Internal Data Coupling (strongest – least
desirable)

Content Coupling (Unrated)

Control Coupling

 46

Passing control flags between modules so that one module controls the sequencing of the
processing steps in another module

Common Object Occurrence
 A sends a message to B
 B uses a parameter of the message to decide what to do

class Lamp {
 public static final ON = 0;

 public void setLamp(int setting) {
 if (setting == ON)
 //turn light on
 else if (setting == 1)
 // turn light off
 else if (setting == 2)
 // blink
 }
}

Lamp reading = new Lamp();
reading.setLamp(Lamp.ON);
reading.setLamp)(2);

Cure

 47

Decompose the operation into multiple primitive operations

class Lamp {
 public void on() {//turn light on }
 public void off() {//turn light off }
 public void blink() {//blink }
}

Lamp reading = new Lamp();
reading.on();
reading.blink();

Is this Control Coupling

 48

class BankAccount {
 public void withdrawal(Float amount) {
 balance = balance - amount;
 }
etc.

Is this Control Coupling

class BankAccount {
 public void withdrawal(Float amount) {
 if (balance < amount)
 this.bounceThisCheck();
 else
 balance = balance - amount;
 }
etc.

 49

What if the Lamp had 50 settings?

Control Coupling

 50

Common Object Occurrence

 A sends a message to B
 B returns control information to A

Example: Returning error codes

class Test {
 public int printFile(File toPrint) {
 if (toPrint is corrupted)
 return CORRUPTFLAG;
 blah blah blah
 }
}

Test when = new Test();
int result = when.printFile(popQuiz);
if (result == CORRUPTFLAG)
 blah
else if (result == -243)

Cure – Use Exceptions

 51

How does this reduce coupling?

class Test {
 public int printFile(File toPrint) throws PrintException {
 if (toPrint is corrupted)
 throws new PrintException();
 blah blah blah
 }
}

try {
 Test when = new Test();
 when.printFile(popQuiz);
}
catch (PrintException printError) {
 do something
}

Cure – Use Optionals

 52

Use where a value may be absent

Replaces use of null & exceptions

Converting String to Int

“123” 123

“2cat” ?An optional either
Has a value
Is nil

var sample: String?
Defines a string optional
sample is either nil or contains a string

Cure – Use Optionals

 53

let aString = "123"
let possibleInt:Int? = Int(aString)

if let theInt = possibleInt {
 let foo = theInt + 10
} else {
 print("It was not an Int")
}

func foo() throws -> String

func foo() -> String?

Swift
Can convert Exception into optional

Types of Coupling

 54

Data Coupling (weakest – most desirable)

Control Coupling

Global Data Coupling

Internal Data Coupling (strongest – least
desirable)

Content Coupling (Unrated)

Global Data Coupling

 55

Global Data is evil

Global Data Coupling

 56

What are the following?

 System.out
 Integer.MAX_VALUE

Types of Global Data Coupling in increasing order of "badness"

 57

Make a reference to a specific external object

Make a reference to a specific external object, and to methods in the external object

A component of an object-oriented system has a public interface which consists of items
whose values remain constant throughout execution, and whose underlying structures/
implementations are hidden

A component of an object-oriented system has a public interface which consists of items
whose values remain constant throughout execution, and whose underlying structures/
implementations are not hidden

A component of an object-oriented system has a public interface which consists of items
whose values do not remain constant throughout execution, and whose underlying
structures/implementations are hidden

A component of an object-oriented system has a public interface which consists of items
whose values do not remain constant throughout execution, and whose underlying
structures/implementations are not hidden

Types of Coupling

 58

Data Coupling (weakest – most desirable)

Control Coupling

Global Data Coupling

Internal Data Coupling (strongest – least
desirable)

Content Coupling (Unrated)

Internal Data Coupling

 59

One module directly modifies local data of another module

Common Object Occurrences
 C++ Friends
 Smalltalk reflection
 Java reflection
 Python

Java Police Verse Python

 60

Python drops that pretense of security and encourages programmers to be responsible.
In practice, this works very nicely.

From Stack Over Flow

Internal Data Coupling

 61

Implement a debugger without using internal data coupling

Types of Coupling

 62

Data Coupling (weakest – most desirable)

Control Coupling

Global Data Coupling

Internal Data Coupling (strongest – least
desirable)

Content Coupling (Unrated)

Lexical Content Coupling

 63

Some or all of the contents of one module are included in the contents of
another

Common Object Occurrence

C/C++ header files

Decrease coupling by
 Restrict what goes in header file
 C++ header files should contain only class interface specifications

