
CS 635 Advanced Object-Oriented Design & Programming
Fall Semester, 2018

Doc 19 Dependency Injection, SOLID
Nov 20, 2018

Copyright ©, All rights reserved. 2018 SDSU & Roger
Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700
USA. OpenContent (http://www.opencontent.org/opl.shtml)
license defines the copyright on this document.

http://www.opencontent.org/opl.shtml

 2

Dependency Injection

Fowler’s Movie Example

 3

Find all movies by a given director

Movie data is in colon separated file

ColonDelimitedMovieFinder
Class that reads movie file
Structures data so we can search it

Fowler’s Movie Example

 4

Find all movies by a given director

class MovieLister {
 private ColonDelimitedMovieFinder finder =

new ColonDelimitedMovieFinder("movies1.txt");

 public Movie[] moviesDirectedBy(String arg) {
 List allMovies = finder.findAll();
 for (Iterator it = allMovies.iterator(); it.hasNext();) {
 Movie movie = (Movie) it.next();
 if (!movie.getDirector().equals(arg)) it.remove();
 }
 return (Movie[]) allMovies.toArray(new Movie[allMovies.size()]);
 }

 5

MovieLister now depends on (uses) a particular low level service

What if we need to use a different low level service?

Move data to database

class MovieLister {
 private ColonDelimitedMovieFinder finder =

new ColonDelimitedMovieFinder("movies1.txt");

 public Movie[] moviesDirectedBy(String arg) {
 List allMovies = finder.findAll();
 for (Iterator it = allMovies.iterator(); it.hasNext();) {
 Movie movie = (Movie) it.next();
 if (!movie.getDirector().equals(arg)) it.remove();
 }
 return (Movie[]) allMovies.toArray(new Movie[allMovies.size()]);
 }

Dependency is inside the MovieLister class

 6

Low level objects are building blocks for the applications
Read files
Interact with database
Display data on screen
Easy to reuse elsewhere

High level objects contain the business logic
Main purpose of the application
Hard to reuse elsewhere due to dependencies on low level details

Program to an Interface

 7

public interface MovieFinder {
 List findAll();
}

With Factory Method

 8

class MovieLister {
 private MovieFinder finder;

 public MovieLister() {
 finder = createFinder();
 }

 public MovieFinder createFinder() {
 new ColonDelimitedMovieFinder("movies1.txt");
 }

 public Movie[] moviesDirectedBy(String arg) {
 // Same as before
 }

For each concrete finder need:
Concrete finder class
Subclass of MovieLister

With Constructor

 9

class MovieLister {
 private MovieFinder finder;

 public MovieLister(MovieFinder finder) {
 this.finder = finder;
 }

 public Movie[] moviesDirectedBy(String arg) {
 // Same as before
 }
}

For each concrete finder need:
Concrete finder class

MovieLister not depend on concrete finder

class ColonDelimitedMovieFinder implements MovieFinder {
 private String filename;

 ColonDelimitedMovieFinder(String filename) { this.filename = filename;}

 public List findAll() {...}
}

Manual Injection

 10

public class Injector {
public static void main(String[] args) {

MovieFinder finder = new ColonDelimitedMovieFinder("movies1.txt");
MovieLister lister = new MovieLister(finder);
lister.moviesDirectedBy(“Spielberg”);

}

 11

MovieFinder finder = new ColonDelimitedMovieFinder("movies1.txt");
MovieLister lister = new MovieLister(finder);
lister.moviesDirectedBy(“Spielberg”);

MovieLister lister = new MovieLister();
lister.moviesDirectedBy(“Spielberg”);

So we replace

With

Problems with Manual Injection

 12

Scaling is hard

Same dependency is needed in multiple places
Multiple different dependencies in multiple places

Program is still dependent on the dependencies

Plugin Pattern

 13

Links classes during configuration rather than compilation

Code runs in multiple runtime environments

Each environment requires different implementations of particular service

Plugin provides centralized runtime configuration

Plugin Pattern - How it works

 14

Separated Interface

Define an interface in a separate package from its implementation

Program needs the interface at compile time

Program will load the implementation at runtime

Plugin Pattern - How it works

 15

Plugin uses a factory to create the service

Plugin reads file to determine which implementation of service to create

With Reflection (Java)
Plugin reads the class of the needed service from file
Plugin factory creates instance of service class
Plugin source code does not have reference class of the service

Without Reflection
Plugin reads which service is needed from file
Plugin factory uses conditional logic to create service instance
Plugin source code needs to reference class of all service implementations

Plugin Pattern - How it works

 16

How to load class at runtime

Class.forName(“edu.sdsu.cs.whitney.BinarySearchTree”)

Converts a string to the Class represented by the string

Dependency Injection & Plugin Pattern

 17

Use the plugin pattern to provide
Central location to handle dependency injection
Configure the application from external data at runtime

Injector - add services to client
Also known as:

assembler
provider
container
factory
builder
spring
construction code

Type of Dependency Injection

 18

Constructor

Setter

Interface

Constructor Injection with PicoContainer

 19

class MovieLister {
 public MovieLister(MovieFinder finder) { this.finder = finder;}

class ColonDelimitedMovieFinder implements MovieFinder {
 ColonDelimitedMovieFinder(String filename) { this.filename = filename;}

private MutablePicoContainer configureContainer() {
 MutablePicoContainer pico = new DefaultPicoContainer();
 Parameter[] finderParams = {new ConstantParameter("movies1.txt")};
 pico.registerComponentImplementation(MovieFinder.class,
 ColonMovieFinder.class,

 finderParams);
 pico.registerComponentImplementation(MovieLister.class);
 return pico;
}

 20

pico.registerComponentImplementation(MovieFinder.class,
 ColonMovieFinder.class,

 finderParams);

When you need a MovieFinder instance return an instance of ColonMovieFinder

Use finderParams as argument for ColonMovieFinder constructor

Reflection is used to do this

pico.registerComponentImplementation(MovieLister.class);

Container can now create MovieLister instance

Its constructor needs a MovieFinder object,
Container already knows how to create a MovieFinder object

Using the Container

 21

public void testWithPico() {

 MutablePicoContainer pico = configureContainer();

 MovieLister lister = (MovieLister) pico.getComponentInstance(MovieLister.class);

 Movie[] movies = lister.moviesDirectedBy("Sergio Leone");

 assertEquals("Once Upon a Time in the West", movies[0].getTitle());

}

 22

MovieFinder finder = new ColonDelimitedMovieFinder("movies1.txt");
MovieLister lister = new MovieLister(finder);
lister.moviesDirectedBy(“Spielberg”);

private MutablePicoContainer configureContainer() {
 MutablePicoContainer pico = new DefaultPicoContainer();
 Parameter[] finderParams = {new ConstantParameter("movies1.txt")};
 pico.registerComponentImplementation(MovieFinder.class, ColonMovieFinder.class,

 finderParams);
 pico.registerComponentImplementation(MovieLister.class);
 return pico;
}

public void testWithPico() {
 MutablePicoContainer pico = configureContainer();
 MovieLister lister = (MovieLister) pico.getComponentInstance(MovieLister.class);
 Movie[] movies = lister.moviesDirectedBy("Sergio Leone");
 assertEquals("Once Upon a Time in the West", movies[0].getTitle());
}

So replaced

With

How to configure from a file?

 23

Class.forName(“edu.sdsu.cs.whitney.BinarySearchTree”)

Converts a string to the Class represented by the string

Setter Injection with Spring

 24

class MovieLister...
 private MovieFinder finder;
 public void setFinder(MovieFinder finder) {
 this.finder = finder;
 }

class ColonMovieFinder...
 public void setFilename(String filename) {
 this.filename = filename;
 }

Each class needs a setter method

XML Configuration File

 25

<beans>
 <bean id="MovieLister" class="spring.MovieLister">
 <property name="finder">
 <ref local="MovieFinder"/>
 </property>
 </bean>
 <bean id="MovieFinder" class="spring.ColonMovieFinder">
 <property name="filename">
 <value>movies1.txt</value>
 </property>
 </bean>
</beans>

Spring.xml

Using the injector

 26

 ApplicationContext ctx = new FileSystemXmlApplicationContext("spring.xml");
 MovieLister lister = (MovieLister) ctx.getBean("MovieLister");
 Movie[] movies = lister.moviesDirectedBy("Sergio Leone");
 assertEquals("Once Upon a Time in the West", movies[0].getTitle());

Interface Injection

 27

Define an interface for doing the injection

public interface InjectFinder {
 void injectFinder(MovieFinder finder);
}

class MovieLister implements InjectFinder
 public void injectFinder(MovieFinder finder) {
 this.finder = finder;
 }

The injector can be anything

Framework uses the interface to find & use the injector

Service Locator

 28

Object that knows how to get all the services that an application needs

 29

class MovieLister...
 MovieFinder finder = ServiceLocator.movieFinder();

class ServiceLocator...
 public static MovieFinder movieFinder() {
 return soleInstance.movieFinder;
 }
 private static ServiceLocator soleInstance;
 private MovieFinder movieFinder;

How to configure the service locator?

 30

In code
From file

Service Locator vs Dependency Injection

 31

Clients are dependent on Service Locator

Dependency Injection makes it easier to see component dependencies

If building an application dependency on Service Locator is ok

If providing component for others to use Dependency Injection is easier

 32

SOLID

OO Design Principle by Robert Martin

 33

Single Responsibility Principle

Open Closed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Single Responsibility Principle (SRP)

 34

A class should have only one reason to change

Responsibility -> Reason to change

Simplest principle

Hardest to get right

SRP - Modem Example

 35

public interface Modem {
public void dial(String phoneNumber);
public void hangup();
public void send(char c);
public char receive()

}

Two responsibilities

Connection management
Data communication

If need to change signature of connection functions then
classes that call send and receive will have to be recompiled more often than needed

If app not changing in ways that cause the two responsibilities to chanage at
different times then no need to separate them

 36

An axis of change is only an axis of change
if the changes actually occur

 37

Interface
Data Channel

send(char)
recv(): char

Interface
Connection

dial(String)
hangup()

Modem
Implementation

Separating Coupled Responsibilities

 38

He kept both responsibilities in ModemImplementation class

Not desirable but may be necessary

By separating the interfaces we have decoupled them as far as the app is concerned

Nobody but main need to know it exists

The Open Closed Principle

 39

You should be able to extend a classes behavior, without modifying it.

No significant program can be 100% closed

Designer must choose the kinds of changes against which to close the design

Liskov Substitution Principle

 40

Child classes must be substitutable for their parent classes

Rectangle

Square

Rectangle a = new Square();

 41

class Rectangle {
double width;
double height;

public double width() {return width; }
public double height() {return height; }
public void width(double w) {width = w; }
public void height(double h) {height = h; }
public double area() {return height * width; }

}

public Square extends Rectangle {
public void width(double w) {

super.width(w);
super.height(w);

}
public void height(double h) {

super.width(h);
super.height(h);

}
}

public void foo(Rectangle r) {
r.width(5);
r.height(2);
assert(r.area() == 4);

}

What Went Wrong?

 42

Behavior of a square is not the same as the behavior of a rectangle

Behavior is what software is about

The ISA relationship pertains to behavior

View a design in terms of the reasonable assumptions made by users

Interface Segregation Principle

 43

Make fine grained interfaces that are client specific

Interface
Data Channel

send(char)
recv(): char

Interface
Connection

dial(String)
hangup()

Modem
Implementation

Bad Design

 44

Rigidity
Every change affects too many parts of the system

Fragility
When you make a change, unexpected parts of the system break

Immobility
Hard to reuse in another application because it can’t be disentangled from the
current application

Causes of Bad Design

 45

Interdependence of the modules

Dependency Inversion Principle

 46

High level modules should not depend upon low level modules.
Both should depend upon abstractions.

Abstractions should not depend upon details.
Details should depend upon abstractions.

Violation

 47

class MovieLister {
 private ColonDelimitedMovieFinder finder =

new ColonDelimitedMovieFinder("movies1.txt");

 public Movie[] moviesDirectedBy(String arg) {
 List allMovies = finder.findAll();
 for (Iterator it = allMovies.iterator(); it.hasNext();) {
 Movie movie = (Movie) it.next();
 if (!movie.getDirector().equals(arg)) it.remove();
 }
 return (Movie[]) allMovies.toArray(new Movie[allMovies.size()]);
 }

MovieLister depends on ColonDelimitedMovieFinder

Program to an Interface

 48

public interface MovieFinder {
 List findAll();
}

Copy Program

 49

3

: The Dependency Inversion Principle

predicted by the designers or maintainers, the impact of the change cannot be estimated.
This makes the cost of the change impossible to predict. Managers, faced with such unpre-
dictability, become reluctant to authorize changes. Thus the design becomes officially
rigid.

Fragility is the tendency of a program to break in many places when a single change is
made. Often the new problems are in areas that have no conceptual relationship with the
area that was changed. Such fragility greatly decreases the credibility of the design and
maintenance organization. Users and managers are unable to predict the quality of their
product. Simple changes to one part of the application lead to failures in other parts that
appear to be completely unrelated. Fixing those problems leads to even more problems,
and the maintenance process begins to resemble a dog chasing its tail.

A design is immobile when the desirable parts of the design are highly dependent
upon other details that are not desired. Designers tasked with investigating the design to
see if it can be reused in a different application may be impressed with how well the
design would do in the new application. However if the design is highly interdependent,
then those designers will also be daunted by the amount of work necessary to separate the
desirable portion of the design from the other portions of the design that are undesirable.
In most cases, such designs are not reused because the cost of the separation is deemed to
be higher than the cost of redevelopment of the design.

Example: the “Copy” program.

A simple example may help
to make this point. Consider a
simple program that is charged
with the task of copying charac-
ters typed on a keyboard to a
printer. Assume, furthermore,
that the implementation plat-
form does not have an operating
system that supports device inde-
pendence. We might conceive of
a structure for this program that
looks like Figure 1:

Figure 1 is a “structure chart”

1

. It shows that there are three modules, or subprograms,
in the application. The “Copy” module calls the other two. One can easily imagine a loop
within the “Copy” module. (See Listing 1.) The body of that loop calls the “Read Key-
board” module to fetch a character from the keyboard, it then sends that character to the
“Write Printer” module which prints the character.

1. See:

The Practical Guide To Structured Systems Design

, by Meilir Page-Jones, Yourdon Press,
1988

Figure 1. Copy Program.

Copy

Read
Keyboard

Write
Printer

5

: The Dependency Inversion Principle

input device to any output device. OOD
gives us a mechanism for performing
this

dependency inversion

.
Consider the simple class diagram

in Figure 2. Here we have a “Copy”
class which contains an abstract
“Reader” class and an abstract “Writer”
class. One can easily imagine a loop
within the “Copy” class that gets char-
acters from its “Reader” and sends
them to its “Writer” (See Listing 3). Yet
this “Copy” class does not depend upon
the “Keyboard Reader” nor the “Printer
Writer” at all. Thus the dependencies
have been

inverted

; the “Copy” class
depends upon abstractions, and the
detailed readers and writers depend
upon the same abstractions.

Now we can reuse the “Copy”
class, independently of the “Key-
board Reader” and the “Printer
Writer”. We can invent new kinds of
“Reader” and “Writer” derivatives
that we can supply to the “Copy”
class. Moreover, no matter how
many kinds of “Readers” and “Writ-
ers” are created, “Copy” will depend
upon none of them. There will be no
interdependencies to make the pro-
gram fragile or rigid. And Copy()
itself can be used in many different
detailed contexts. It is mobile.

Device Independence

By now, some of you are probably saying to yourselves that you could get the same bene-
fits by writing Copy() in C, using the device independence inherent to

stdio.h

; i.e.

getchar

 and

putchar

 (See Listing 4). If you consider Listings 3 and 4 carefully, you
will realize that the two are logically equivalent. The abstract classes in Figure 3 have been
replaced by a different kind of abstraction in Listing 4. It is true that Listing 4 does not use
classes and pure virtual functions, yet it still uses abstraction and polymorphism to achieve
its ends. Moreover, it still uses dependency inversion! The Copy program in Listing 4 does
not depend upon any of the details it controls. Rather it depends upon the abstract facilities

Figure 2: The OO Copy Program

AbstractAbstract

Copy

Reader Writer

Printer
Writer

Keyboard
Reader

class Reader
{
public:
virtual int Read() = 0;

};

class Writer
{
public:
virtual void Write(char) = 0;

};

void Copy(Reader& r, Writer& w)
{
int c;
while((c=r.Read()) != EOF)
w.Write(c);

}

Listing 3: The OO Copy Program

