
CS 635 Advanced Object-Oriented Design & Programming
Fall Semester, 2018

Doc 22 12 steps, CS Major Advise
Dec 4, 2018

Copyright ©, All rights reserved. 2018 SDSU & Roger
Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700
USA. OpenContent (http://www.opencontent.org/opl.shtml)
license defines the copyright on this document.

http://www.opencontent.org/opl.shtml

 2

Joel Spolsky 12 Steps
http://www.joelonsoftware.com/articles/fog0000000043.html

Joel's 12 Steps to Better Code

 3

Do you use source control?

Can you make a build in one step?

Do you make daily builds?

Minimal data on each bug

Complete steps to reproduce the bug

Expected behavior

Observed (buggy) behavior

Who it's assigned to

Whether it has been fixed or not

Do you have a bug database?

Do you fix bugs before writing new code?

Do you have an up-to-date schedule?

Joel's 12 Steps to Better Code in Companies

 4

Do you have a spec?

Do programmers have quiet working conditions?

Do you use the best tools money can buy?

Do you have testers?

Do new candidates write code during their interview?

Do you do hallway usability testing?

Grab the next person that passes by in the hallway
Force them to try to use the code you just wrote

Learn 95% of what there is to learn about usability problems in your code

 5

What every computer science major should know
Dr. Matt Might
University of Utah

http://matt.might.net/articles/
what-cs-majors-should-know/

 6

What should every student know to get a good job?

What should every student know to maintain lifelong employment?

What should every student know to enter graduate school?

What should every student know to benefit society?

Portfolio verse Resume

 7

A resume says nothing of a programmer's ability

Portfolio
Personal blog
Projects
Github
Open source projects

Technical Communication

 8

Lone wolves in computer science are an endangered species

In smaller companies, whether or not a programmer can communicate
her ideas to management may make the difference between the
company's success and failure

Unix Philosophy

 9

linguistic abstraction and composition

Should be able to

Navigate and manipulate the filesystem;
Compose processes with pipes;
Comfortably edit a file with emacs and vim;
Create, modify and execute a Makefile for a software project;
Write simple shell scripts.

Unix Philosophy

 10

Sample tasks

Find the five folders in a given directory consuming the most space

Report duplicate MP3s (by file contents, not file name) on a computer.

Take a list of names whose first and last names have been lower-cased, and
properly recapitalize them.

Find all words in English that have x as their second letter, and n as their
second-to-last.

Directly route your microphone input over the network to another computer's
speaker.

Replace all spaces in a filename with underscore for a given directory.

Report the last ten errant accesses to the web server coming from a specific IP
address.

Systems administration

 11

Every modern computer scientist should be able to:

Install and administer a Linux distribution.

Configure and compile the Linux kernel.

Troubleshoot a connection with dig, ping and traceroute.

Compile and configure a web server like apache.

Compile and configure a DNS daemon like bind.

Maintain a web site with a text editor.

Cut and crimp a network cable.

http://matt.might.net/articles/how-to-make-your-own-cat-5-ethernet-cable/

Programming languages

 12

Programming languages rise and fall with the solar cycle.

A programmer's career should not.

The best way to learn how to learn programming languages is to learn multiple
programming languages and programming paradigms.

To truly understand programming languages, one must implement one.

Programming languages

 13

Racket

C

JavaScript

Squeak

Java

Standard ML

Prolog

Scala

Haskell

C++

Assembly

Pony

Elm

Lisp

Architecture

 14

There is no substitute for a solid understanding of computer architecture

transistors
gates
adders
muxes
flip flops
ALUs
control units
caches
RAM
GPU

Operating systems

 15

Any sufficiently large program eventually becomes an operating system

To get a better understanding of the kernel, students could:

Print "hello world" during the boot process;

Design their own scheduler;

Modify the page-handling policy; and

Create their own filesystem.

Networking

 16

Computer scientists should have a firm understanding of the network stack and
routing protocols within a network

Every computer scientist should implement the following:
an HTTP client and daemon;
a DNS resolver and server; and
a command-line SMTP mailer.

No student should ever pass an intro networking class without sniffing their
instructor's Google query off wireshark.

http://www.wireshark.org/

Security

 17

Computer scientists must be aware of the means by which a program can be
compromised

At a minimum, every computer scientist needs to understand:
social engineering
buffer overflows
integer overflow
code injection vulnerabilities
race conditions
privilege confusion

Software testing

 18

Software testing must be distributed throughout the entire curriculum

He uses test cases turned in by students against all other students

Students don't seem to care much about developing defensive test cases,
but they unleash hell when it comes to sandbagging their classmates

Visualization

 19

The Visual Display of Quantitative Information by Tufte

The modern world is a sea of data

http://www.amazon.com/gp/product/0961392142/ref=as_li_ss_tl?ie=UTF8&tag=ucmbread-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=0961392142

Topics I left out

 20

Databases
Artificial intelligence
Machine learning
Robotics
Graphics and simulation
Software engineering
Parallelism
User experience design

 21

Disarmingly Forthright MSCS Advice
Nick Black
http://nick-black.com/dankwiki/images/8/85/Msadvice.pdf

Read it

If you’ll only take away two things

 22

Read the damn man pages

Check your damn return values

You’re a CS MS student. Act it

 23

Join the ACM and IEEE

Don’t embarrass yourself
Passwords
Backups

If you don’t have at least 100 semi-frequent, provocative/
informative RSS feeds you’re checking a few times daily, you’re
not learning enough

Programming

 24

Vast majority of code you’ll read is laughably broken

if you aren’t, at any given time, scandalized by
code you wrote five or even three years ago,
you’re not learning anywhere near enough

Seek out, study, and bookmark good code

Learn to program axiomatically

take each element of the system, language, and toolchain, and learn it throughout

Keep all your projects in source control systems like git or svn

