
CS 635 Advanced OO Design and Programming
Spring Semester, 2019

Assignment 2
© 2019, All Rights Reserved, SDSU & Roger Whitney

 San Diego State University -- This page last updated 9/18/19

SpreadSheet

Due Oct 10

1. Use the Interpreter pattern to evaluate postfix expressions. The expression (1967 + 21) *
sin(3) will be 1967 21 + 3 sin * in postfix. For more information about postfix see the Wikipedia
entry entry. You should support at least the operations +, -, *, / , lg (base 2) and sin. You may
restrict the input to integer values. However the result may be a floating point number since we
are including lg and sin. Postfix is used here to simplify the parsing. If you prefer to use normal
arithmetic expressions you may.

2. Implement a spreadsheet with 9 cells with a GUI. The cells are labeled $A, $B, $C, $D, $E,
$F, $G, $H, $I. (If you prefer you can use a 2-dimensional layout with the cells labeled AA,
AB, AC, BA, BB, etc) A cell can contain either a formula, a number or be empty. A
formula can contain numbers, reference to cells and the operations. In the first example below
cell $A contains 1, $B contains the number 2, $C contains the formula $A $B +, and $E con-
tains the formula $A $C +. We have an equation and a value view of the cells. The two tables
below shows both the equation and the value views of the cells. Provide the user with a button
to switch between views. That is you display the spreadsheet once and the user can toggle the
view between the two views by clicking on a button. You need to provide a way for the user to
enter values and equations. You either allow the user to enter the values directly in a cell or
provide them with a separate input field to enter values and/or equations.

Value View

Equation View

While in the value view if a user changes the value of a cell (for example cell $B) then all cells
dependent on that cell need to be updated automatically. Note that more than one cell may re-
quire updating. One may be tempted to update all the cells whenever a user modifies one
cell. However this will not scale to a really spreadsheet, so do not do it. When a user
modifies one cell only update the cells that are effected by the change.

$A $B $C $D $E $F $G $H $I

2 3 5 8

$A $B $C $D $E $F $G $H $I

2 3 $A $B + $B $C +

http://en.wikipedia.org/wiki/Reverse_Polish_notation
http://en.wikipedia.org/wiki/Reverse_Polish_notation

In this example above three cells depend on $A. If the user changes the value in cell $A all the
values in the other cells need to be updated. Note that which cells depend on which cell is
completely determined by the user. You have to be careful with circular dependancies. The fol-
lowing is just one example of a circular dependancy. This is an error condition which you have
to detect.

You might find the observer and state patterns useful here.

3. Add an undo mechanism to your spreadsheet. The undo mechanism should be unlimited.
However the undo history does not have to span multiple invocations of the program. That is
when you start the program your undo history can start empty. Each change the user makes in
either a value or an equations is to be undoable.

Grading

View $A $B $C $D $E $F $G $H $I

Equa-
tion

1 $A $C
+

$D 1 + $B 2 *

Value 1 Error Error Error

Item Percent of Grade

Working Code 20%

Unit Tests 10%

Proper implementation of Patterns 60%

Quality of Code 10%

