
CS 635 Advanced Object-Oriented Design & Programming
Fall Semester, 2019

Doc 3 Code Smells, Refactoring, Unit Tests
Sep 3, 2019

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

Review

 2

Object-Oriented Programming is good as it promotes
Code reuse
More readable code
More maintainable code
Better designs

Basic OO Heuristics

 3

Keep related data and behavior in one place

A class should capture one and only one key abstraction

Beware of classes that have many accessor methods defined in their public interface

So Why is Software Still so Bad?

 4

Example - Billing For Plays

 5

function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",{ style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 const play = plays[perf.playID];
 let thisAmount = 0;
 switch (play.type) {
 case "tragedy":
 thisAmount = 40000;
 if (perf.audience > 30) { thisAmount += 1000 * (perf.audience - 30);}
 break;
 case "comedy":
 thisAmount = 30000;
 if (perf.audience > 20) { thisAmount += 10000 + 500 * (perf.audience - 20); }
 thisAmount += 300 * perf.audience;
 break;
 default: throw new Error(`unknown type: ${play.type}`);
 }

Part 2

 6

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;
}

 7

function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD", minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 const play = plays[perf.playID];
 let thisAmount = amountFor(perf, play);

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

 8

function amountFor(perf, play) {
 let thisAmount = 0;
 switch (play.type) {
 case "tragedy":
 thisAmount = 40000;
 if (perf.audience > 30) {
 thisAmount += 1000 * (perf.audience - 30);
 }
 break;
 case "comedy":
 thisAmount = 30000;
 if (perf.audience > 20) {
 thisAmount += 10000 + 500 * (perf.audience - 20);
 }
 thisAmount += 300 * perf.audience;
 break;
 default:
 throw new Error(`unknown type: ${play.type}`);
 }
 return thisAmount;
}

Ready to Add Features

 9

function statement (invoice, plays) {
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

 function totalAmount() {
 let result = 0;
 for (let perf of invoice.performances) {
 result += amountFor(perf);
 }
 return result;
 }

 function totalVolumeCredits() {
 let result = 0;
 for (let perf of invoice.performances) {
 result += volumeCreditsFor(perf);

 10

 function totalVolumeCredits() {
 let result = 0;
 for (let perf of invoice.performances) {
 result += volumeCreditsFor(perf);
 }
 return result;
 }

 function usd(aNumber) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format(aNumber/100);
 }

 function volumeCreditsFor(aPerformance) {
 let result = 0;
 result += Math.max(aPerformance.audience - 30, 0);
 if ("comedy" === playFor(aPerformance).type) result += Math.floor(aPerformance.audience / 5);
 return result;
 }

 function playFor(aPerformance) {
 return plays[aPerformance.playID];
 }
 function amountFor(aPerformance) {

 11

 function amountFor(aPerformance) {
 let result = 0;
 switch (playFor(aPerformance).type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${playFor(aPerformance).type}`);
 }
 return result;
 }
}

 12

The true test of good code is how easy it is to change it.

Code Smell

 13

Hint that something has gone wrong somewhere in your code

http://c2.com/cgi/wiki?CodeSmell

Lists of Code Smells

 14

Coding Horror: Code Smells

http://www.codinghorror.com/blog/2006/05/code-smells.html

http://c2.com/cgi/wiki?CodeSmell

Cunningham wiki c2

Comments

 15

There's a fine line between comments that illuminate and comments that obscure.

 Are the comments necessary?

Do they explain "why" and not "what"?

Can you refactor the code so the comments aren't required?

And remember, you're writing comments for people, not machines.

http://blog.codinghorror.com/code-smells/

Uncommunicative Name, Vague Identifier

 16

Does the name of the method succinctly describe what that method does?

Could you read the method's name to another developer and have them explain to you
what it does?

If not, rename it or rewrite it.

meetsCriteria
flag

http://c2.com/cgi/fullSearch

Inconsistent Names

 17

Pick a set of standard terminology and stick to it throughout your methods.

If you have Open(), you should probably have Close().

Type Embedded in Name

 18

Avoid placing types in method names;

it's not only redundant, but it forces you to change the name if the type changes.

Conditional Complexity

 19

Watch out for large conditional logic blocks

Particularly blocks that tend to grow larger or change significantly over time.

Consider alternative object-oriented approaches such as
decorator,
strategy, or
state.

Dead Code

 20

Ruthlessly delete code that isn't being used.

That's why we have source control systems!

Code Smell - Utility Method

 21

Utility methods are a sign that related data and operations are not together

Java & OO

 22

In many situations we can not OO in Java

Can not keep data and operations together in many of Java's existing classes

Ruby, Objective-C & Smalltalk allow you to add to existing classes

Result

 23

Can't practice OO in small cases

Develop poor habits

Lose benefits of OO but don't noticce

One Responsibility Rule

 24

"A class has a single responsibility: it does it all, does it well, and does it only"

Bertrand Meyer

Try to describe a class in 25 words or less, and not to use "and" or "or"

If can not do this you may have more than one class

http://c2.com/cgi/fullSearch

Duplicate Code

 25

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

 26

The average method size should be less than 8 lines of code (LOC) for Smalltalk and 24
LOC for C++

The average number of methods per class should be less than 20

The average number of fields per class should be less than 6.

The class hierarchy nesting level should be less than 6

The average number of comment lines per method should be greater than 1

Long Method - Large Class

Long Parameter List

 27

a.foo(12, 2, "cat", "<tr>", 19.6, x, y, classList, cutOffPoint)

Divergent Change

 28

If, over time, you make changes to a class that touch completely different parts
of the class, it may contain too much unrelated functionality.

Consider isolating the parts that changed in another class.

ShotGun Surgery

 29

If a change in one class requires cascading changes in several related classes,

consider refactoring so that the changes are limited to a single class.

Middle Man

 30

If a class is delegating all its work, why does it exist?

Cut out the middleman.

Beware classes that are merely wrappers over other classes or existing
functionality in the framework.

Feature Envy

 31

A method seems more interested in a class other than
the one it is in.

Data Clumps

 32

Same three or four data items together in lots of places

Primitive Obsession

 33

Don't use a gaggle of primitive data type variables as a poor man's substitute for a class.

If your data type is sufficiently complex, write a class to represent it.

Money
Date
Name
Address
Phone Number

Repeated Switch Statements

 34

How do you program without them?

Replace Conditional with Polymorphism

switch account {
case BankAccount: account.foo();
case SavingsAccount: account.bar();
case nil: account = new CheckingAccount()

}

account.foobar()

foo verses bar?
nil?

Repeated Switch Statements

 35

How do you program without them?

Replace Conditional with Polymorphism

switch size {
case 1..9: small();
case 10: middle();
default: large();

}

Lazy Class

 36

Classes should pull their weight.

Every additional class increases the complexity of a project.

If you have a class that isn't doing enough to pay for itself,
can it be collapsed or combined into another class?

Data Class

 37

Class with just fields and setter/getter methods

Data classes are like children.

They are okay as a starting point, but to participate as a grownup object, they
need to take some responsibility

Inappropriate Intimacy

 38

Watch out for classes that spend too much time together,
or classes that interface in inappropriate ways.

Classes should know as little as possible about each other.

Message Chains

 39

location = rat.getRoom().getMaze().getLocation()

Negative Slope

 40

if (foo) {
if (bar) {

if (cat = dog) {
if (rat < 10) {

...

Temporary Field

 41

Field is only used in certain circumstances

Common case
field is only used by an algorithm
Don't want to pass around long parameter list
Make parameter a field

Refused Bequest

 42

Subclass does not want to support all the methods of parent class

Subclass should support the interface of the parent class

Solution Sprawl

 43

If it takes five classes to do anything useful, you might have solution sprawl.

Consider simplifying and consolidating your design.

Loops

 44

 Replace Loop with Pipeline

Map
Reduce
Filter

Easier to see what is being processed

for (int k = 0; k++; k <= items.size()) {
sum = 0;
if (items[k] > 10) {

sum = sum + 2*items[k] -3;
}

}

items.
filter(item -> item > 10).
map(item -> 2 * item -2).
sum()

Mutable Data

 45

Changes to data can often lead to unexpected consequences and tricky bugs

Swift
var a = [1, 2, 3] // mutable
let b = [1, 2, 3] // immutable

Kotlin
var a = [1, 2, 3] // mutable
val b = [1, 2, 3] // immutable

Mutable Data

 46

 Encapsulate Variable
All updates occur through narrow functions

Extract Function
 Separate the side-effect-free code from anything that performs the update

Separate Query from Modifier
Ensure callers don’t need to call code with side effects unless they really need to.

Combine Functions into Class
Combine Functions into Transform

Limit how much code needs to update a variable

Change Reference to Value
Replace the entire structure rather than modify it

 47

Refactoring

Refactoring

 48

Changing the internal structure of software that changes its observable behavior

Done to make the software easier to understand and easier to modify

Brief History of Refactoring

 49

UIUC
Opdyke, Refactoring Object-Oriented Frameworks, Ph.D. 1992

Brant & Roberts, Refactoring Browser, mid- to late 1990s

Refactoring: Improving the Design of Existing Code, Martin Fowler, 1999

Refactoring: Improving the Design of Existing Code 2nd,
Martin Fowler, Nov 2, 2018

 50

When to Refactor

 51

Rule of three

Three strikes and you refactor

When to Refactor

 52

When you add a new function
When you need to fix a bug
When you do a code review

When Refactoring is Hard

 53

Databases

Changing published interfaces

Major design issues

 54

When you add a feature to a program

If needed Refactor the program to make it easy to add the feature

Then add the feature

 55

Before you start refactoring

Make sure that you have a solid suite of tests

Test should be self-checking

 56

Do I need tests when I use my IDEs refactoring tools?

Are your IDE refactoring tools bug free?

 57

Refactoring in IDE

Refactoring Menu

 58

Eclipse Intellij

Rename Class

 59

public class Foo {
 public int foo() {
 return 10;
 }
}

public class Bar {
 public int bar() {
 Foo test = new Foo();
 return test.foo() + 99;
 }
}

public class NewFoo {
 public int foo() {
 return 10;
 }
}

public class Bar {
 public int bar() {
 NewFoo test = new NewFoo();
 return test.foo() + 99;
 }
}

Eclipse Rename

 60

Move

 61

public class Foo {
 public int foo() { return 10;}

 public int fooTwo() { return 20; }
}

public class Bar {
 public int helperMethod(Foo test) {
 return test.foo() + test.fooTwo();
 }

 public int callHelper() {
 Foo data = new Foo();
 return helperMethod(data);
 }
}

public class Bar {
 public int callHelper() {
 Foo data = new Foo();
 return data.sum();
 }
}

public class Foo {
 public int foo() { return 10;}

 public int fooTwo() {return 20; }

 public int sum() {
 return foo() + fooTwo();
 }
}

Eclipse Move

 62

Extract Class

 63

Refactoring Tool Issue

 64

People tend to only use the features they know

Refactoring Tool Issue

 65

Is a tool hard to use because I am unfamiliar with it or is it just hard to use

Refactoring by 41 Professional Programmers

 66

Number of Programmers used
Refactoring Total Times used

IntroduceFactory 1 1

PushDown 1 1

UseSupertype 1 6

EncapsulateField 2 5

Introduce Parameter 3 25

Convert Local to Field 5 37

Extract Interface 10 26

Inline 11 185

Modify Parameters 11 79

Pull up 11 37

Extract Method 20 344

Move 24 212

Rename 41 2396

Try In You IDE

 67

Rename
Move
Encapsulate Field
Extract Method
Extract Class

 68

Unit Testing

Johnson's Law

If it is not tested it does not work

The more time between coding and testing

 More effort is needed to write tests
 More effort is needed to find bugs
 Fewer bugs are found
 Time is wasted working with buggy code
 Development time increases
 Quality decreases

Testing

 69

Unit Testing

 70

Tests individual code segments

Automated tests

Using print statements

Writing driver program in main

Writing small sample programs to run code

Running program and testing it be using it

What wrong with:

 71

We have a QA Team, so why should I write tests?

 72

First write the tests

Then write the code to be tested

Writing tests first saves time

 Makes you clear of the interface & functionality of the code

 Removes temptation to skip tests

When to Write Tests

 73

Everything that could possibly break

Test values
 Inside valid range
 Outside valid range
 On the boundary between valid/invalid

GUIs are very hard to test
 Keep GUI layer very thin
 Unit test program behind the GUI, not the GUI

What to Test

 74

Adapted with permission from “A Short Catalog of Test
Ideas” by Brian Marick,
http://www.testing.com/writings.html

Strings
Empty String

Collections
Empty Collection
Collection with one element
Collection with duplicate elements
Collections with maximum possible size

Numbers
Zero
The smallest number
Just below the smallest number
The largest number
Just above the largest number

Common Things Programs Handle Incorrectly

 75

http://www.testing.com/writings.html

XUnit

 76

Free frameworks for Unit testing

SUnit originally written by Kent Beck 1994

JUnit written by Kent Beck & Erich Gamma

Available at: http://www.junit.org/

Ports to many languages at:
 http://www.xprogramming.com/software.htm

JUnit Versions

 77

3.x
Old version
Works with a versions of Java

4.x
Uses Annotations
Requires Java 5 or later

5.x
Supports Java 8 and later

Simple Class to Test

 78

public class Adder {
 private int base;
 public Adder(int value) {
 base = value;
 }

 public int add(int amount) {
 return base + amount;
 }
}

Creating Test Case in Eclipse

 79

Fill in dialog window &
 create the test cases

Creating Test Case in Eclipse

 80

Test Class

 81

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class TestAdder {

 @Test
 public void testAdd() {
 Adder example = new Adder(3);
 assertEquals(4, example.add(1));
 }

 @Test
 public void testAddFail() {
 Adder example = new Adder(3);
 assertTrue(3 == example.add(1));
 }
}

Running the Tests

 82

The result

 83

assertArrayEquals()
assertTrue()
assertFalse()
assertEquals()
assertNotEquals()
assertSame()
assertNotSame()
assertNull()
assertNotNull()
fail()

Assert Methods

 84

Annotations

 85

After
AfterClass
Before
BeforeClass
Ignore
Rule
Test

Using Before

 86

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;

import org.junit.Before;
import org.junit.Test;

public class TestAdder {
 Adder example;
 @Before
 public void setupExample() {
 example = new Adder(3);
 }

 @Test
 public void testAdd() {
 assertEquals(4, example.add(1));
 }
}

