
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2019

Doc 4 Pattern Intro, Observer Pattern
Sep 10, 2019

Copyright ©, All rights reserved. 2019 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

Pattern Beginnings

 2

"Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it the
same way twice"

"Each pattern is a three-part rule, which expresses a relation between a certain
context, a problem, and a solution"

A Pattern Language, Christopher Alexander, 1977

A Place To Wait

 3

The process of waiting has inherent conflicts in it.

Waiting for doctor, airplane etc. requires spending time hanging around doing nothing

Cannot enjoy the time since you do not know when you must leave

Classic "waiting room"
Dreary little room
People staring at each other
Reading a few old magazines
Offers no solution

Fundamental problem
How to spend time "wholeheartedly" and
Still be on hand when doctor, airplane etc arrive

Fuse the waiting with other activity that keeps them in earshot
 Playground beside Pediatrics Clinic
 Horseshoe pit next to terrace where people waited

Allow the person to become still meditative
 A window seat that looks down on a street
 A protected seat in a garden
 A dark place and a glass of beer
 A private seat by a fish tank

A Place To Wait

 4

Therefore:

"In places where people end up waiting create a situation which makes the waiting
positive. Fuse the waiting with some other activity - newspaper, coffee, pool tables,
horseshoes; something which draws people in who are not simple waiting. And also the
opposite: make a place which can draw a person waiting into a reverie; quiet; a positive
silence"

Chicken And Egg

 5

Problem

Two concepts are each a prerequisite of the other
To understand A one must understand B
To understand B one must understand A
A "chicken and egg" situation

Constraints and Forces

First explain A then B
 Everyone would be confused by the end

Simplify each concept to the point of incorrectness to explain the other one
 People don't like being lied to

Solution

Explain A & B correctly by superficially

Iterate your explanations with more detail in each iteration

Patterns for Classroom Education, Dana Anthony, pp. 391-406, Pattern Languages of Program Design 2, Addison Wesley,
1996

Design Principle 1

 6

Program to an interface, not an implementation

Use abstract classes (and/or interfaces in Java) to define common interfaces for a set of classes

Declare variables to be instances of the abstract class not instances of particular classes

Benefits of programming to an interface

Client classes/objects remain unaware of the classes of objects they use,
as long as the objects adhere to the interface the client expects

Client classes/objects remain unaware of the classes that implement these objects.
Clients only know about the abstract classes (or interfaces) that define the interface.

Programming to an Interface

 7

Collection

Set List

SortedSet HashSet

TreeSet ArrayList LinkedList

Vector

Map

SortedMapHashMap

TreeMap

Hashtable

Class

Interface

Implements

Extends

WeakHashMap

Collection students = new XXX;
students.add(aStudent);

students can be any collection type

We can change our mind on what type to use

Interface & Duck Typing

 8

In dynamically typed languages programming to an interface is the norm

Dynamically typed languages tend to lack a way to declare an interface

Design Principle 2

 9

Favor object composition over class inheritance

Composition
 Allows behavior changes at run time
 Helps keep classes encapsulated and focused on one task
 Reduce implementation dependencies

Inheritance
class A {
 Foo x
 public int complexOperation() { blah }
}

class B extends A {
 public void bar() { blah}
}

Composition
class B {
 A myA;
 public int complexOperation() {
 return myA.complexOperation()
 }

 public void bar() { blah}
}

Designing for Change

 10

Algorithmic dependencies
 Builder, Iterator, Strategy,

 Template Method, Visitor

Inability to alter classes conveniently
 Adapter, Decorator, Visitor

Dependence on specific operations
 Chain of Responsibility, Command

Dependence on hardware and software platforms
 Abstract factory, Bridge

Tight Coupling
 Abstract factory, Bridge, Chain of Responsibility,
 Command, Facade, Mediator, Observer

Extending functionality by subclassing
 Bridge, Chain of Responsibility, Composite,
 Decorator, Observer, Strategy

Extending functionality by subclassing
 Bridge, Chain of Responsibility, Composite,
 Decorator, Observer, Strategy

Dependence on object representations or implementations
 Abstract factory, Bridge, Memento, Proxy

Creating an object by specifying a class explicitly
 Abstract factory, Factory Method, Prototype

Kent Beck's Rules for Good Style

 11

One and only once

In a program written in good style, everything is said once and only once

Methods with the same logic
Objects with same methods
Systems with similar objects

 rule is not satisfied

Lots of little Pieces

 12

"Good code invariably has small methods and small objects"

Small pieces are needed to satisfy "once and only once"

Make sure you communicate the big picture or you get a mess

Rates of change

 13

Don't put two rates of change together

An object should not have a field that changes every second & a field that change
once a month

A collection should not have some elements that are added/removed every second
and some that are add/removed once a month

An object should not have code that has to change for each piece of hardware and
code that has to change for each operating system

Replacing Objects

 14

Good style leads to easily replaceable objects

"When you can extend a system solely by adding new objects without modifying
any existing objects, then you have a system that is flexible and cheap to maintain"

Moving Objects

 15

"Another property of systems with good style is that their objects can be easily
moved to new contexts"

 16

Observer

Observer

 17

One-to-many dependency between objects

When one object changes state,
 all its dependents are notified and updated automatically

Structure

 18

observers

subject

Subject
Attach(Observer)
Detach(Observer)
Notify()

Observer
Update()

ConcreteSubject
GetState()

subjectState

ConcreteObserver
Update()

observerState

subject

observer Bobserver A

GetState()Update()

SetState()

Update()

subject observer A observer B
Notify()

Update()

GetState()
Update()

GetState()

SetState()

Common Java Example - Listeners

 19

Java Interface

View.OnClickListener

abstract void onClick(View v)
Called when a view has been clicked.

http://developer.android.com/reference/android/view/View.OnClickListener.html#onClick(android.view.View)
http://developer.android.com/reference/android/view/View.html

Java Example

 20

public class CreateUIInCodeActivity extends Activity implements View.OnClickListener{
 Button test;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 test = (Button) this.findViewById(R.id.test);
 test.setOnClickListener(this);
 }

 public void onClick(View source) {
 Toast.makeText(this, "Hello World", Toast.LENGTH_SHORT).show();
 }
}

Pseudo Java Example

 21

public class Subject {
 Window display;
 public void someMethod() {
 this.modifyMyStateSomeHow();
 display.addText(this.text());
 }
}

public class Subject {
 ArrayList observers = new ArrayList();

 public void someMethod() {
 this.modifyMyStateSomeHow();
 changed();
 }

 private void changed() {
 Iterator needsUpdate = observers.iterator();
 while (needsUpdate.hasNext())
 needsUpdate.next().update(this);
 }
}

public class SampleWindow {
 public void update(Object subject) {
 text = ((Subject) subject).getText();
 Thread.sleep(10000).
 }
}

Abstract coupling - Subject & Observer

Broadcast communication

Updates can take too long

Some Language Support

 22

Smalltalk Implementation
Object implements methods for both Observer and Subject.

Actual Subjects should subclass Model

Smalltalk Java Ruby Clojure Observer Pattern

Object Observer function Abstract Observer class

Object & Model Observable Observable watches on data Subject class

Java's Observer

 23

Class java.util.Observable

void addObserver(Observer o)
void clearChanged()
int countObservers()
void deleteObserver(Observer o)
void deleteObservers()
boolean hasChanged()
void notifyObservers()
void notifyObservers(Object arg)
void setChanged()

Observable object may have any number of Observers

Whenever the Observable instance changes,
it notifies all of its observers

Notification is done by calling the update() method on all observers.

Interface java.util.Observer

Allows all classes to be observable by instances of class Observer

Java Observer Pattern

Interface Observer Abstract Observer class

Observable class Subject class

Deprecated in Java 9

Flow

 24

Java Observer & Observable are replaced by
java beans
Reactive Streams (Flow)

Publisher (Subject)
Subscriber (Observer)
Processor (Subject & Observer)
Subscription

Link between publisher & subscriber

Flow

Coupling & Observer Pattern

 25

Subject coupled to Observer interface

Does not know the concrete type of the observers

There can be 0+ observers

 26

Implementation Issues

 27

Mapping subjects(Observables) to observers

Use list in subject
Use hash table

public class Observable {
 private boolean changed = false;
 private Vector obs;

public Observable() {
 obs = new Vector();
 }

public synchronized void addObserver(Observer o) {
 if (!obs.contains(o)) {
 obs.addElement(o);
 }
 }

Observing more than one subject

 28

If an observer has more than one subject how does it know which one changed?

Pass information in the update method

Deleting Subjects

 29

In C++ the subject may no longer exist

Java/Smalltalk observer may prevent subject from garbage collection

Who Triggers the update?

 30

Have methods that change the state trigger update

 class Counter extends Observable { // some code removed
 public void increase() {
 count++;
 setChanged();
 notifyObservers(INCREASE);
 }
 }

Have clients call Notify at the right time

class Counter extends Observable { // some code removed
 public void increase() { count++; }
}

Counter pageHits = new Counter();
pageHits.increase();
pageHits.increase();
pageHits.increase();
pageHits.notifyObservers();

Subject is self-consistent before Notification

 31

class ComplexObservable extends Observable {
 Widget frontPart = new Widget();
 Gadget internalPart = new Gadget();

 public void trickyChange() {
 frontPart.widgetChange();
 internalpart.anotherChange();
 setChanged();
 notifyObservers();
 }
}

class MySubclass extends ComplexObservable {
 Gear backEnd = new Gear();

 public void trickyChange() {
 super.trickyChange();
 backEnd.yetAnotherChange();
 setChanged();
 notifyObservers();
 }
}

Adding information about the change

 32

push models - add parameters in the update method

class IncreaseDetector extends Counter implements Observer { // stuff not shown

 public void update(Observable whatChanged, Object message) {
 if (message.equals(INCREASE))
 increase();
 }
}

class Counter extends Observable { // some code removed
 public void increase() {
 count++;
 setChanged();
 notifyObservers(INCREASE);
 }
}

Adding information about the change

 33

pull model - observer asks Subject what happened

class IncreaseDetector extends Counter implements Observer {
 public void update(Observable whatChanged) {
 if (whatChanged.didYouIncrease())
 increase();
 }
}

class Counter extends Observable { // some code removed
 public void increase() {
 count++;
 setChanged();
 notifyObservers();
 }
}

Rate of Updates

 34

In single threaded operation

All observers must finish before subject can continue operation

What to do when subject changes faster than observers can handle

 35

Scaling the Pattern

Java Event Model

 36

AWT/Swing components broadcast events to Listeners

JDK1.0 AWT components broadcast an event to all its listeners

A listener normally not interested all events

Broadcasting to all listeners was too slow with many listeners

Java 1.1+ Event Model

 37

Each component supports different types of events:

Component supports
ComponentEvent FocusEvent
KeyEvent MouseEvent

Each event type supports one or more listener types:

MouseEvent
MouseListener MouseMotionListener

Each listener interface replaces update with multiple methods

MouseListener
mouseClicked() mouseEntered()
mousePressed() mouseReleased()

Listeners
Only register for events of interest
Don't need case statements to determine what happened

Small Models

 38

Often an object has a number of fields(aspects) of interest to observers

Rather than make the object a subject make the individual fields subjects
Simplifies the main object
Observers can register for only the data they are interested in

VisualWorks ValueHolder

Subject for one value

ValueHolder allows you to:

Set/get the value
Setting the value notifies the observers of the change

Add/Remove dependents

 39

Reactive Programming

Reactive Manifesto

 40

Organizations working in disparate domains are independently discovering
patterns for building software that look the same.

These systems are more robust, more resilient, more flexible and better
positioned to meet modern demands.

Reactive Systems are
Responsive
Resilient

React to failure
Elastic

React to load
Message Driven

Motivation

Need millisecond response
100% uptime
Data is measured in Petabytes
Applications run on

Mobile
Clusters of 1000s of multicore processors

https://www.reactivemanifesto.org

History

 41

1997 - Elliott & Hudak
 Fran - reactive animations Reactive Functional Programing

2012 - Elm
 RFP for the web

2009 Akka
Actor model + reactive streams

2013 React
Facebook's system for Web UI components

2014 RxJava 1.0
Port of Reactive Extensions (ReactiveX) to Java

2009 Reactive Extension for .NET early version

2011 Reactive Extension for .NET Official release

2016 RxJava 2.0
ReactiveX 2.0 implementation in Java

ReactiveX

 42

http://reactivex.io

Their claim

The Observer pattern done right

ReactiveX is a combination of the best ideas from
Observer pattern,
Iterator pattern,
Functional programming

Ported to multiple languages
Basic ideas same
Syntax differs

Reactive Programming

 43

datatypes that represent a value 'over time'

Spreadsheets

Reactive Programming

 44

Spreadsheets
Elm
React (Facebook)
Reagent (Clojure)
Android Architecture Components
SwiftUI
Swift Combine
Flutter (Google)
Fuchsia (Google)
Akka
Java Flow
ReactiveX

RxJava (35,500 GitHub stars)
RxJS
Rx.NET
RxPY
RxSwift
RxKotlin

RxAndroid (16,800 GitHub stars)
RxCocoa

Reactive Programming - Elm

 45

datatypes that represent a value 'over time'

SwiftUI Example

 46

import SwiftUI

struct ContentView : View {
 @State private var count : Int = 0

 var body: some View {
 VStack(alignment: .leading) {
 HStack {
 Button(action: {self.count = self.count + 1}){
 Text("+").font(.system(size: 120))
 }
 Spacer()
 Button(action: {self.count = self.count - 1}){
 Text("-").font(.system(size: 120))
 }
 }
 Spacer()
 Text("\(count)").font(.system(size: 80))
 }.padding()
 }
}

Reactive Programming Concepts

 47

Unify data types into stream of events/data
Events
Collections
Value changing
Asynchronous callbacks

One-way data flows
React & Flux

Unify Data Types

 48

Iterator<String> list = strings.iterator();
while (list.hasNext()){
 String element = list.next();
 processEachElement(element);
 }
}

Time

When Elements are processes

Time

But some elements take longer to process

Unify Data Types

 49

class Foo {
int bar;

Time

When bar changed

bar changes value over time

The Basics

 50

Subjects (Observables) generate a stream or flow of events/data

Streams
Support map, filter and other functions

Send three types of messages/events
onNext - the next data in the stream

onCompleted - The stream is at the end

onError - An error occurred

Observers subscribe to streams
Some subjects give all the events/data to new subscribers
Some give only current value and future changes
Some subjects allow observers to tell subjects to slow down

RxJava - Basic Classes

 51

io.reactivex.Flowable:
0..N flows, supporting Reactive-Streams and backpressure

io.reactivex.Observable:
0..N flows, no backpressure

io.reactivex.Single:
a flow of exactly 1 item or an error

io.reactivex.Completable:
a flow without items but only a completion or error signal

io.reactivex.Maybe:
a flow with no items, exactly one item or an error.

RxJava HelloWorld

 52

import io.reactivex.*;

public class Example {
 public static void main(String[] args) {
 Flowable.just("Hello world")
 .subscribe(System.out::println);
 }
}

RxJava Subscribe methods

 53

subscribe(Consumer<? super T> onNext)

subscribe(Consumer<? super T> onNext,
Consumer<? super Throwable> onError)

subscribe(Consumer<? super T> onNext,
Consumer<? super Throwable> onError,
Action onComplete)

 Consumer<String> print = text -> System.out.println(text);
 print.accept("hello World");

Java Consumer
Lambda or function that has one argument and no return value

 54

import io.reactivex.*;

public class Example {
 public static void main(String[] args) {
 Flowable<Integer> flow = Flowable.range(1, 5)
 .map(v -> v * v)
 .filter(v -> v % 2 == 0);
 System.out.println("Start");
 flow.subscribe(System.out::println);
 System.out.println("Second");
 flow.subscribe(value -> System.out.println("Second " + value));
 }
}

Output
Start
4
16
Second
Second 4
Second 16

Observables with Varying Number of Events

 55

Flowable<Integer> flow = Flowable.range(1, 5)
flow has fixed number of data points
So more like iterator over a collection

How to create observable with varying number of data points/events

Emitters
Subjects

Emitter Interface

 56

onComplete()
onError(Throwable error)
onNext(T value)

Example

 57

import io.reactivex.*;

public class Example {
 public static void main(String[] args) {
 Observable<String> observable = Observable.create(emitter -> {
 emitter.onNext("A");
 emitter.onNext("B");
 emitter.onNext("B");
 emitter.onComplete();
 });
 System.out.println("Start");
 observable.subscribe(System.out::println,Throwable::printStackTrace,
 () -> System.out.println("Done"));
 }
}

Longer Running Example

 58

import io.reactivex.*;

public class Example {
 public static void main(String[] args) {
 Observable<Long> observable = Observable.create(emitter -> {
 while (!emitter.isDisposed()) {
 long time = System.currentTimeMillis();
 emitter.onNext(time);
 if (time % 2 != 0) {
 emitter.onError(new IllegalStateException("Odd millisecond!"));
 break;
 }
 }
 });
 System.out.println("Start");
 observable.subscribe(System.out::println,Throwable::printStackTrace);
 }
}

Important Notes

 59

Data generation all done in lambda
But could have called a method on an object

Observable just knows to pass emitter to observer

Subjects

 60

Subjects are
Observable
Observers

Multiple Types
BehaviorSubject

Sends current value and future values to observers

PublishSubject
Sends future values to observers

ReplaySubject
Sends past, current and future values to observers

PublishSubject Example

 61

import io.reactivex.subjects.PublishSubject;
import io.reactivex.subjects.Subject;

public class Example {
 public static void main(String[] args) {
 Subject<String> subject = PublishSubject.create();
 subject.subscribe(System.out::println,
 Throwable::printStackTrace,
 () ->System.out.println("Done"));

 subject.onNext("Start");
 subject.onNext("A");

 subject.subscribe(text -> System.out.println("Later " + text));
 subject.onNext("B");
 subject.onNext("C");
 subject.onComplete();
 }
}

Output
Start
A
B
Later B
C
Later C
Done

BehaviorSubject Example

 62

import io.reactivex.subjects.BehaviorSubject;
import io.reactivex.subjects.Subject;

public class Example {
 public static void main(String[] args) {
 Subject<String> subject = BehaviorSubject.create();
 subject.subscribe(System.out::println,
 Throwable::printStackTrace,
 () ->System.out.println("Done"));

 subject.onNext("Start");
 subject.onNext("A");

 subject.subscribe(text -> System.out.println("Later " + text));
 subject.onNext("B");
 subject.onNext("C");
 subject.onComplete();
 }
}

Output
Start
A
Later A
B
Later B
C
Later C
Done

ReplaySubject Example

 63

import io.reactivex.subjects.ReplaySubject;
import io.reactivex.subjects.Subject;

public class Example {
 public static void main(String[] args) {
 Subject<String> subject = ReplaySubject.create();
 subject.subscribe(System.out::println,
 Throwable::printStackTrace,
 () ->System.out.println("Done"));

 subject.onNext("Start");
 subject.onNext("A");

 subject.subscribe(text -> System.out.println("Later " + text));
 subject.onNext("B");
 subject.onNext("C");
 subject.onComplete();
 }
}

Output
Start
A
Later Start
Later A
B
Later B
C
Later C
Done

Diagrams

 64

PublishSubject

 65

BehaviorSubject

 66

ReplaySubject

 67

RxPy

 68

from rx import Observable

source = Observable.of("Alpha", "Beta", "Gamma", "Delta", "Epsilon")

source.subscribe(on_next=lambda value: print("Received {0}".format(value)),
 on_completed=lambda: print("Done!"),
 on_error=lambda error: print("Error Occurred: {0}".format(error))
)

source.subscribe(on_completed=lambda: print("Done!"),
 on_next=lambda value: print("Received {0}".format(value))
)

source.subscribe(lambda value: print("Received {0}".format(value)))

source.subscribe(print)

RxPy

 69

xs = Observable.from_(range(10))
d = xs.filter(lambda x: x % 2)
 .map(lambda x: x * 2)
 .subscribe(print)

2
6
10
14
18

xs = Observable.range(1, 5)
ys = Observable.from_("abcde")
zs = xs.merge(ys).subscribe(print)

a
1
b
2
c
3
d
4
e
5

from rx import Observable

PublishSubject

 70

from rx.subjects import Subject

stream = Subject()
stream.subscribe(on_next=lambda value: print("Received {0}".format(value)),
 on_completed=lambda: print("Done!"),
 on_error=lambda error: print("Error Occurred: {0}".format(error))
)
stream.on_next("Start")
stream.on_next("A")
d = stream.subscribe(lambda x: print("Got: %s" % x))

stream.on_next("B")

d.dispose()
stream.on_next("C")
stream.on_next(10)

stream.on_completed()

Received Start
Received A
Received B
Got: B
Received C
Received 10
Done!

ReplaySubject

 71

from rx.subjects import ReplaySubject

stream = ReplaySubject()
stream.subscribe(on_next=lambda value: print("Received {0}".format(value)),
 on_completed=lambda: print("Done!"),
 on_error=lambda error: print("Error Occurred: {0}".format(error))
)
stream.on_next("Start")
stream.on_next("A")
d = stream.subscribe(lambda x: print("Got: %s" % x))

stream.on_next("B")

d.dispose()
stream.on_next("C")
stream.on_next(10)

stream.on_completed()

Received Start
Received A
Got: Start
Got: A
Received B
Got: B
Received C
Received 10
Done!

RxSwift

 72

import RxSwift

let dataSequence = Observable.from([1, 2, 3])
dataSequence.subscribe(onNext: {print($0)})

1
2
3

dataSequence.subscribe(
 onNext: {print($0)},
 onCompleted: {print("Done")})

1
2
3
Done

2
5
9
Done

dataSequence
 .map {$0 + 1}
 .scan(0) {$0 + $1}
 .subscribe(onNext: {print($0)},onCompleted: {print("Done")})

PublishSubject

 73

let subject = PublishSubject<Int>()
subject.subscribe(onNext: {print("Subject = \($0)")},
 onCompleted: {print("Done")})

subject.map {$0 + 10}
 .subscribe(onNext: {print("Plus 10 = \($0) ")})

print("Start")
subject.onNext(2)
print("After 2")
subject.onNext(4)
print("No more")

Start
Subject = 2
Plus 10 = 12
After 2
Subject = 4
Plus 10 = 14
No more

Network Calls

 74

if let url = URL(string: "https://bismarck.sdsu.edu/registration/subjectlist") {
let request = URLRequest(url: url)

let responseJSON = URLSession.shared.rx.json(request: request)

let cancelRequest = responseJSON.subscribe(
 onNext: { json in print(json) },
 onCompleted: {print("Done")})

}

Sample App

 75

Specs

Color values
Integers
0 - 100

Change in slider
Changes text field
Changes color of box

Change in text field
Changes slider
Changes color of box

Standard Solution

 76

Have reference to
redSlider
greenSlider
blueSlider

redText(field)
greenText(field)
blueText(field)

Have callback function called on change
redSlider
greenSlider
blueSlider

redText(field)
greenText(field)
blueText(field)

Color class
Stores value of red, green, blue

Standard Solution

 77

Slider call back function - each slider
Called when slider changes
Get value of slider
Convert value to string

Set text field with string value of slider
Change color of box
Store the current color value

Textfield call back function
Called when user types character or deletes a character
Get value of textfield
Convert string to float

Set value of slider to float value of textfield
Change color of box
Store the current color value

One Slider Callback

 78

 @IBAction func redSliderChanged(_ sender: Any) {
 redText.text = Int(redSlider.value).description
 guard let redString = redText?.text,

let red = Double(redString),
let greenString = greenText?.text,
let green = Double(greenString),
let blueString = blueText?.text,
let blue = Double(blueString) else {

 return
 }
 colorBox.backgroundColor = UIColor(red: CGFloat(red)/100,

 green: CGFloat(green)/100,
 blue: CGFloat(blue)/100, alpha: 1)

 color.red = red
 }

Slider Callback Functions

 79

ColorBox

Color Object

Red

Green

Blue

Red

Green

Blue

Alpha

Color as Subject/Observable

 80

Color Object

Red

Green

Blue

Red

Green

Blue

ColorBox

Alpha

One Slider Callback

 81

 @IBAction func redSliderChanged(_ sender: Any) {
 color.red = Int(redSlider.value)
 }

Color Updating UI

 82

 override func viewDidLoad() {
 super.viewDidLoad()
 color.observable.subscribe(onNext: {(type) in
 self.colorBox.backgroundColor = self.color.asUIColor()
 switch type {

 case .Red:
 self.redText.text = String(self.color.red)
 self.redSlider.value = Float(self.color.red)
 case .Green:
 self.greenText.text = String(self.color.green)
 self.greenSlider.value = Float(self.color.green)
 case .Blue:
 self.blueText.text = String(self.color.blue)
 self.blueSlider.value = Float(self.color.blue)

 }
 })

Functional Reactive Programming

 83

Mathematical Variables

x = y

x remains equal to y

redSlider.value = Float(self.color.red)

So why can't we mean redSlider.value is always the same value as:
Float(self.color.red)

ReactiveSwift

 84

Reactive library for Swift

Same ideas as ReactiveX (RxSwift)
Uses different terms for same ideas

Not tied to ReactiveX
So syntax is more Swift-like
Claims simpler than RxSwift

ReactiveSwift <~ operator

 85

 redSlider.reactive.value <~ color.red.map {Float($0)}

Whenever color.red changes then perform
redSlider.reactive.value = color.red.map {Float($0)}

color.redProperty.map {Float($0)}.signal.observeValues({self.redSlider.value = $0})

 86

 redSlider.reactive.value <~ color.red.map {Float($0)}

 redText.reactive.text <~ color.red.map { String($0)}
 greenSlider.reactive.value <~ color.green.map {Float($0)}
 greenText.reactive.text <~ color.green.map { String($0)}
 blueSlider.reactive.value <~ color.blue.map {Float($0)}
 blueText.reactive.text <~ color.blue.map { String($0)}

 //update data when sliders move
 color.red <~ redSlider.reactive.values.map {Int($0)}
 color.green <~ greenSlider.reactive.values.map {Int($0)}
 color.blue <~ blueSlider.reactive.values.map {Int($0)}

 //update data when text fields change
 color.redProperty <~ redText.reactive.continuousTextValues.map {
 self.stringToInt(value: $0)}
 color.greenProperty <~ greenText.reactive.continuousTextValues.map {
 self.stringToInt(value: $0)}
 color.blueProperty <~ blueText.reactive.continuousTextValues.map {
 self.stringToInt(value: $0)}

overload func viewDidLoad() {

 87

class Color {
 var red: MutableProperty<Int> = MutableProperty(0)
 var green: MutableProperty<Int> = MutableProperty(0)
 var blue: MutableProperty<Int> = MutableProperty(0)

 convenience init() {
 self.init(red: 30, green: 40, blue: 100)
 }

 init(red: Int, green: Int, blue: Int) {
 self.red.value = red
 self.green.value = green
 self.blue.value = blue
 }
}

Property generates a Signal(Channel)
Observers can listen for events

on the signal(channel)

What We Want Done vs How To Do it

 88

 @IBAction func redSliderChanged(_ sender: Any) {
let redValue: Float = redSlider.value

 color.red = Int(redValue)
 }

 redSlider.reactive.value <~ color.red.map {Float($0)}

Reactive Programming

 89

New terms
Channels, Signals
Events
Producers
etc

Needs to rethink how to write code

Aside

 90

 color.red.signal.observeValues
 {self.redSlider.value = Float($0)
 self.redText.text = String($0)}
 color.green.signal.observeValues
 {self.greenSlider.value = Float($0)
 self.greenText.text = String($0)}
 color.blue.signal.observeValues
 {self.blueSlider.value = Float($0)
 self.blueText.text = String($0)}

 redSlider.reactive.value <~ color.red.map {Float($0)}

 redText.reactive.text <~ color.red.map { String($0)}
 greenSlider.reactive.value <~ color.green.map {Float($0)}
 greenText.reactive.text <~ color.green.map { String($0)}
 blueSlider.reactive.value <~ color.blue.map {Float($0)}
 blueText.reactive.text <~ color.blue.map { String($0)}

verses

