
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2019

Doc 15 Cohesion, Metrics
Nov 5, 2019

Copyright ©, All rights reserved. 2019 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

Reference

 2

Object Coupling and Object Cohesion, chapter 7 of Essays on Object-Oriented Software
Engineering, Vol 1, Berard, Prentice-Hall, 1993,

Cyclomatic complexity, http://en.wikipedia.org/wiki/Cyclomatic_complexity

Lines of Code, http://en.wikipedia.org/wiki/Source_lines_of_code

Eclipse Metrics, http://metrics.sourceforge.net/

Specialization Index, http://semmle.com/documentation/semmlecode-glossary/
specialization-index-of-a-type/

OO Design Quality Metrics: An Analysis of Dependencies, Robert Martin, http://
www.objectmentor.com/resources/articles/oodmetrc.pdf

Source code for twitter4j, http://yusuke.homeip.net/twitter4j/en/index.html

Eclipse Metrics Plugin, http://eclipse-metrics.sourceforge.net/

Object-Oriented Metrics: Measures of Complexity, Brian Henderson-Sellers,
Prentice Hall, 1996

https://xkcd.com/2224/

 3

 4

Cohesion

Cohesion

 5

"Cohesion is the degree to which the tasks performed by a single module
are functionally related."

 IEEE, 1983

"Cohesion is the "glue" that holds a module together. It can be thought of as the
type of association among the component elements of a module. Generally, one
wants the highest level of cohesion possible."

 Bergland, 1981

"A software component is said to exhibit a high degree of cohesion if the elements in
that unit exhibit a high degree of functional relatedness. This means that each
element in the program unit should be essential for that unit to achieve its purpose."

 Sommerville, 1989

Types of Module Cohesion

 6

Coincidental (worst)

Logical

Temporal

Procedural

Communication

Sequential

Functional (best)

Coincidental Cohesion

 7

Little or no constructive relationship among the elements of the module

Common Object Occurrence

Object does not represent any single object-oriented concept

Collection of commonly used source code as a class inherited via multiple
inheritance

class Rous{
 public static int findPattern(String text, String pattern) { // blah}

 public static int average(Vector numbers) { // blah}

 public static OutputStream openFile(String fileName){ // blah}
 }

Logical Cohesion

 8

Module performs a set of related functions, one of which is selected via function
parameter when calling the module

Cure – Isolate each function into separate operations

public void sample(int flag){
 switch (flag){
 case ON:
 // bunch of on stuff
 break;
 case OFF:
 // bunch of off stuff
 break;
 case CLOSE:
 // bunch of close stuff
 break;
 case COLOR:
 // bunch of color stuff
 break;
 }

Temporal Cohesion

 9

Elements are grouped into a module because they are all processed within the same
limited time period

Common example

"Initialization" modules that provide default values for objects
"End of Job" modules that clean up

procedure initializeData() {
 font = "times";
 windowSize = "200,400";
 foo.name = "Not Set";
 foo.size = 12;
 foo.location = "/usr/local/lib/java";
 }

Temporal Cohesion

 10

Cure
Each object should have a constructor and destructor

How is this better?

Procedural Cohesion

 11

Groups processing elements based on procedural or algorithmic relationships

Procedural modules are application specific

In context the module seems reasonable

Outside the context modules seem strange and very hard to understand

Can not understand module without understanding the program and the
conditions existing when module is called

Makes module hard to modify, understand

Procedural Cohesion

 12

class LinkedList {

public boolean add(String item) { blah }

public Object get(int index) { blah }

public Iterator iterator() { blah}

public Object[] studentsOnProbabation() { blah }
}

 13

Class Builder verse Program writer

Communication Cohesion

 14

Operations of a module all operate upon the same input data set and/or produce the
same output data

Cure - Isolate each element into separate modules

Rarely occurs in object-oriented systems due to polymorphism (overloading)

Sequential Cohesion

 15

Sequential association the type in which the output data from one
processing element serve as input data for the next processing element

A module that performs multiple sequential functions where the sequential
relationship among all of the functions is implied by the problems or
application statement and where there is a data relationship among all of the
functions

Cure – Decompose into smaller modules

Functional Cohesion

 16

If the operations of a module can be collectively described as a single specific
function in a coherent way, the module has functional cohesion

If not, the module has lower type of cohesion

In an object-oriented system:

 Each operation in public interface of an object should be functional cohesive

 Each object should represent a single cohesive concept

Informational Strength Cohesion

 17

Myers states:

"The purpose of an informational-strength module is to hide some concept, data
structure, or resource within a single module.

An informational-strength module has the following definition:

It contains multiple entry points

Each entry point performs a single specific function

All of the functions are related by a concept, data structure, or resource that
is hidden within the module"

 18

Object Cohesion

Object Cohesion

 19

The degree to which components of a class are tied together

Evaluating cohesion requires:

Technical knowledge of the application domain

Some experience in building, modifying, maintaining, testing and managing
applications in the appropriate domain

Technical background in and experience with reusability

Questions to probe cohesiveness of an object

 20

Does the object represent a complete and coherent concept or does it more
closely resemble a partial concept, or a random collection of information?

Does the object directly correspond to a "real world entity," physical or logical?

Is the object characterized in very non-specific terms?
 Collection of data, statistics, etc.

Do each of the methods in the public interface for the object perform a single
coherent function?

If the object (or system of objects) is removed from the context of the immediate
application, does it still represent a coherent and complete object-oriented
concept?

Questions to probe cohesiveness of system of objects

 21

Does the system represent an object-oriented concept?

Do all the objects directly support, or directly contribute to the support of, the
object-oriented concept that the system represents?

Are there missing objects?

Objects in Isolation

 22

Isolation means without considering any hierarchy that may contain the
object or class

Individual Objects

 23

A primitive method is any method that cannot be implemented simply, efficiently, and
reliably without knowledge of the underlying implementation of the object

A composite method is any method constructed from two or more primitive methods
– sometimes from different objects

A sufficient set of primitive methods for an object is a minimum set of primitive
methods to accomplish all necessary work with on the object

A sufficient set of primitive methods has two major problems:

Some tasks may be awkward and/or difficult with just a sufficient set of primitive
methods

A sufficient set of primitive methods may not allow us to fully capture the
abstraction represented by the object

A complete set of primitive methods is a set of primitive methods that both allows
us to easily work with the object, and fully captures the abstraction represented by the
object.

To implement Java Collection

 24

Subclass java.util.AbstractList and implement
add(int index, Object element)
get(int index)
remove(int index)
size()
set(int index, Object element)

Subclass java.util.AbstractCollection and implement
add(int index, Object element)
iterator()
size()

Iterator implements
 hasNext()
 next()
 remove()

Is either of these a sufficient set of primitive
methods?

Java's ArrayList

 25

add(int index, Object element) add(Object o) addAll(Collection c)

addAll(int index, Collection c) clear() clone()

contains(Object elem) containsAll ensureCapacity(int minCapacity)

equals get(int index) hashCode

indexOf(Object elem) isEmpty() iterator

lastIndexOf(Object elem) listIterator remove(int index)

removeAll retainAll set(int index, Object element)

size() subList toArray()

toArray(Object[] a) toString trimToSize()

Is this a complete set of primitive methods?

Ruby Array

 26

- & * [] []= |

+ << <=> == abbrev all?

any? assoc at clear collect collect!

compact compact! concat delete delete_at delete_if

detect each each_index each_with_index empty? entries

eql? fetch fill find find_all first

flatten flatten! frozen? grep hash include?

index indexes indices initialize_copy inject insert

inspect join last length map map!

max member? min nitems pack partition

pop push rassoc reject reject! replace

reverse reverse! reverse_each rindex select shift

size slice slice! sort sort! sort_by

to_a to_ary to_s to_set transpose uniq

uniq! unshift values_at zip

Smalltalk OrderedCollection 1

 27

, = add: add:after: add:before:

add:beforeIndex: addAll: addAllFirst: addAllLast: addFirst:

addLast: addLastNoCheck: after: allButFirst: allButLast:

allSatisfy: anySatisfy: asArray asBag asFixedArgument

asList asOrderedCollection asSet asSortedCollection asSortedCollection:

asSortedStrings asSortedStrings: asSortedStrings:with: asSortedStringsWith: at:

at:put: atAll:put: atAllPut: before: capacity

changeCapacityTo: changeSizeTo: collect: contains: copyEmpty

copyEmpty: copyFrom:to: copyReplaceAll:with: copyReplaceFrom:to:with: copyUpTo:

copyWith: copyWithout: detect: detect:ifNone: do:

do:separatedBy: doWithIndex: emptyCheck emptyCollectionError errorOutOfBounds

find: findFirst: findFirst:startingAt: findLast: first

first: firstObjectError fold: forStackDumpPrintUsing: groupedBy:

grow growSize growToAtLeast: hash identityIndexOf:

includes: identityIndexOf:ifAbsent:
identityIndexOf:from:to:
ifAbsent:

Smalltalk OrderedCollection 2

 28

increaseCapacity indexOf: indexOf:ifAbsent: inject:into: insert:before:

inspectorClass inspectorClasses isEmpty isNotEmpty isSameSequenceAs:

isSequenceable isWeakContainer isWeakContainer: keysAndValuesDo: last

last: lastIndexOf: lastIndexOf:ifAbsent: lastObjectError literalArrayEncoding

makeRoomAtFirst makeRoomAtLast maxPrint newReadWriteStream nextIndexOf:from:to:

noMatchError noSuchElementError notEmpty notEnoughElementsError notFoundError

notKeyedError occurrencesOf: piecesCutWhere: piecesCutWhere:do: prevIndexOf:from:to:

writeStream printOn: readStream readWriteStream reject:

remove: remove:ifAbsent: removeAll: removeAllSuchThat: removeAtIndex:

removeFirst removeFirst: removeIndex: removeLast removeLast:

replaceAll:with: replaceAll:with:from:to: replaceFrom:to:with: replaceFrom:to:with:startingAt: representBinaryOn:

reverse reverseDo: runsFailing: runsFailing:do: runsSatisfying:

runsSatisfying:do: select: setIndices setIndicesFrom: size

storeOn: swap:with: tokensBasedOn: trim with:do:

printBriefInspectorTextOn:

Smalltalk OrderedCollection 3

 29

decrementBy:boundedBy:highValue:wrapAround:
startingAt:replaceElementsIn:from:to:
replaceElementsFrom:to:withArray:startingAt:
replaceElementsFrom:to:withByteArray:startingAt:
replaceElementsFrom:to:withByteEncodedString:startingAt:
replaceElementsFrom:to:withCharacterArray:startingAt:
replaceElementsFrom:to:withIntegerArray:startingAt:
replaceElementsFrom:to:withLinkedList:startingAt:
replaceElementsFrom:to:withSequenceableCollection:startingAt:
replaceElementsFrom:to:withTwoByteString:startingAt:
replaceElementsFrom:to:withWordArray:startingAt:
indexOfSubCollection:startingAt:
indexOfSubCollection:startingAt:ifAbsent:
incrementBy:boundedBy:lowValue:wrapAround:

Levels of Cohesion

 30

An object is not as cohesive as it could be if the public interface contains:

Only primitive methods, but does not fully capture the abstraction represented by the
object

Primitive and composite methods, but does not fully capture the abstraction represented
by the object

A sufficient set of primitive methods with composite methods

No primitive methods, just composite methods

Note

Objects with a sufficient set of primitive methods with composite methods is more
cohesive than objects with out a sufficient set of primitive methods

All public methods must directly support the abstraction represented by the object. The
methods must make sense when object is removed from the application

Composite Objects

 31

A composite object is an object that is conceptually composed of two, or more, other
objects, which are externally discernible.

Component objects are those that make up the composite object.

Component objects are externally discernible if

The externally discernible state of the object is directly affected by the presence or
absence of one or more component objects

Component objects can be directly queried or changed via methods in the public
interface of the composite object and/or

Ranking of Cohesion of Composite Objects
Increasing order of Goodness

 32

Externally discernible component objects not related

Some externally discernible component objects are related, the group component
objects does not make sense

The group component objects does not represent a single stable object-oriented
concept, but are all bound together some how in an application

A majority of the externally discernible component objects support a single,
coherent, object-oriented concept, but at least one does not

All of the externally discernible component objects support a single, coherent,
object-oriented concept, but at least one needed is missing

All of the externally discernible component objects support a single, coherent,
object-oriented concept, and none are missing

Accessing Cohesion of an Individual Object

 33

Assessment of the public methods/public non-methods/component objects

Are all the items appropriate for the given object?

Do we have at least a minimally sufficient set of items?

Do we have extra or application-specific items?

 34

Object Coupling

 35

Object Coupling

Interface Coupling Internal Coupling

Inside Internal
 Coupling

Outside Internal
 Coupling

From UnderneathFrom the
side

Internal Coupling & Cohesion

 36

Internal Coupling
 Physical relationships among the items that comprise an object

Cohesion
 Logical relationships among the items that comprise an object

Interface Coupling

 37

One object refers to another specific object, and the original object
makes direct references to one or more items in the specific object's
public interface

Includes module coupling already covered

Weakest form of object coupling, but has wide variation

Issues
 Object abstraction decoupling
 Selector decoupling
 Constructor decoupling
 Iterator decoupling

Object Abstraction Decoupling

 38

Assumptions that one object makes about a category of other objects are isolated and
used as parameters to instantiate the original object.

C++/Java 1.5 Example

class LinkedListCell {
 int cellItem;
 LinkedListCell* next;

 // code can now use fact that cellItem is an int
 if (cellItem == 5) print("We Win");
}

template <class type>
class LinkedListCell#2 {
 type cellItem;
 LinkedListCell* next;

 // code does not know the type, it is just a cell item,
 // it becomes an abstraction
}

Selectors

 39

Return state information about their encapsulated object and
Do not alter the state of their encapsulated object

public void display() {
 Swing GUI code to display the counter
}

public String toString() {return String.valueOf(count);}

Selector
decoupling

Selector Decoupling

 40

Counter Example
class Counter{
 int count = 0;

 public void increment() { count++; }
 public void reset() { count = 0; }
 public void display() {
 Java Swing code to display the counter
 in a slider bar
}

Counter

Selector Decoupled
class Counter{
 int count = 0;

 public void increment() { count++; }
 public void reset() { count = 0; }
 public int count() {return count;}
 public String toString() {return String.valueOf(count);}
}

Iterator

 41

Allows the user to visit all the nodes in a homogeneous composite object
and to perform some user-supplied operation at each node

Primitive Methods

 42

Any method that cannot be implemented simply, efficiently, and reliably
without knowledge of the underlying implementation of the object

Functionally cohesive, they perform a single specific function

Small, seldom exceed five "lines of code"

Types

Selectors (get operations)
Constructors (not the same as class constructors)
Iterators

Constructors

 43

class Calendar {
 public void getMonth(from where, or what) { blah }
}

class Calendar {
 public static Calendar fromString(String date) { blah}
}

Operations that construct a new, or altered version of an object

Primitive Objects

 44

Primitive objects are objects that are both:

 Defined in the standard for the implementation language
 Globally known

Primitive objects don't count in coupling with other objects

Why not?

 45

Object Coupling

Interface Coupling Internal Coupling

Inside Internal
 Coupling

Outside Internal
 Coupling

From Underneath
From the
side

Inside Internal Object Coupling

 46

Coupling between state and operations of an object

The big issue: Accessing state

Changing the structure of the state of an object requires changing all
operations that access the state including operations in subclasses

Solution: Access state via access operations

C++ implementation
 Provide private functions to access and change each data member

Outside Internal Coupling from Underneath

 47

Coupling between a class and subclass involving private state and private
operations

Major Issues

Access to inherited state
 Direct access to inherited state
 Access via operations

Unwanted Inheritance

 Parent class may have operations and state not needed by subclass

Outside Internal Coupling from the Side

 48

Class A accesses private state or private operations of class B

Class A and B are not related via inheritance

Main causes

Using non-object-oriented languages
Special language "features"
C++ friends

 49

Metrics

Metrics

 50

Effort moves toward whatever is measured

DeMarco's Principle

The Swedish Army Dictum

 51

When the map and the territory don't agree, always believe the territory.

Eclipse Metrics 1.3.6

 52

http://metrics.sourceforge.net/

Docs

http://sourceforge.net/projects/metrics

Source Forge Site

Eclipse plugin

Generates about 20 metrics
Displays result in tables in Eclipse
Generates dependency graphs

Eclipse Metrics Plugin

 53

http://eclipse-metrics.sourceforge.net/

Author: Lance Walton

Generates about same metrics as Metrics 1.3.6
Exports results to html or csv
Generates table and graphs

Lines Of Code

 54

SLOC

Rough measure of size

Physical SLOC
Code + comments + blank lines
Not count blank lines over 25% of a section
Eclipse Metrics - calls this Total Lines of Code (TLOC)

Logical SLOC
Just lines of actual code
Eclipse Metrics

calls this Method Lines of Code (MLOC)
But only code inside method bodies

Effort is highly correlated with SLOC

Basic COCOMO

 55

Effort Applied = a(KLOC)b [man-months]

Software Cost Estimation Model

Type a b

Organic 2.4 1.05

Semi-detached 3 1.12

Embedded 3.6 1.2

Organic
Small team, less than rigid requirements

Semi-detached
Medium teams,

Embedded
Tight constraints

Example - 2 KLOC Embedded

 56

Effort Applied = a(KLOC)b [man-months]

Effort Applied = 3.6*(2)1.20 = 8.3 man-months

Problems with LOC

 57

Language differences

Hand written code verses autogenerated code

Programmer variation

Defining and counting LOC

Coding accounts for about 35% of overall effort

Twitter4j Example

 58

Eclipse Metrics Plugin

 59

Eclipse Metrics Plugin

 60

More Size Metrics

 61

Number of Packages
Number of Interfaces
Number of classes per Package

McCabe Cyclomatic Complexity

 62

Number of linearly independent paths through a program

From graph theory

M = E − N + 2P

M = cyclomatic complexity
E = the number of edges of the graph
N = the number of nodes of the graph
P = the number of connected components.

Example

 63

if(c1())
 f1();
else
 f2();

if(c2())
 f3();
else
 f4();

f1 f2

f3 f4

N = 7
E = 8
M = 8 - 7 + 2*1 = 3

What does it tell us?

 64

branch coverage ≤ cyclomatic complexity ≤ number of paths

Is an upper bound for the number of test cases that are necessary to
achieve a complete branch coverage

Is a lower bound for the number of paths through the code

Cyclomatic Complexity

Cyclomatic Complexity & Quality

 65

Higher Cyclomatic Complexity might indicate lower cohesion
One study indicated it is better indicator than metrics designed for cohesion

Some evidence that higher Cyclomatic Complexity implies more bugs

NIST Structured Testing methodology

 66

Split modules with cyclomatic complexity greater than 10

It may be appropriate in some circumstances to
permit modules with a complexity as high as 15

http://en.wikipedia.org/wiki/NIST

Eclipse Metrics 1.3.6

 67

Eclipse Metrics Plugin

 68

Weighted Methods per Class (WMC)

 69

Sum of the McCabe Cyclomatic Complexity for all methods in a class

Basic Class Metrics

 70

Number of methods per class
Number of static methods per class
Number of attributes(fields) per class
Number of static attributes per class

Number of parameters per method

Twitter4j Example

 71

Nested Block Depth

 72

The depth of nested blocks of code

 public static JSONObject toJSONObject(String string) throws JSONException {
 JSONObject o = new JSONObject();
 JSONTokener x = new JSONTokener(string);
 while (x.more()) {
 String name = Cookie.unescape(x.nextTo('='));
 x.next('=');
 o.put(name, Cookie.unescape(x.nextTo(';')));
 x.next();
 }
 return o;
 }

Depth = 2

Twitter4j Example

 73

Some Inheritance Metrics

 74

Depth of Inheritance Tree (DIT)
Distance from class Object in the inheritance hierarchy

Number of Children
Total number of direct subclasses of a class

Number of Overridden Methods (NORM)

Specialization Index
NORM * DIT / number of methods

If greater than 5 likely that superclass abstraction has a problem

Lack of Cohesion in Methods (LCOM)

 75

M be the set of methods defined by the class
F be the set of fields defined by the class
r(f) be the number of methods that access field f, where f is a member of F
<r> be the mean of r(f) over F.

High Cohesion

When each method accesses all fields
<r> = |M|
LCOM = 0

Low Cohesion

When each method accesses one fields
<r> = 1
LCOM = 1

<r> - |M|

 1 - |M|

Lack of Cohesion of Methods

 76

Metrics for Stable Code

 77

Dependencies make code rigid, fragile and difficult to reuse

Copy

Read
Keyboard

Write
Printer

Flexible version

 78

reader

writer

Copy
Reader

Writer

Keyboard
Reader

Keyboard
Reader

Have dependencies on Reader/Writer classes
But these classes are stable

Main Idea

 79

When code depends on other classes, changes to those classes
can force the code to change

The fewer classes code depends on the stabler the code is

Class Categories

 80

Group of highly cohesive classes that

1. The classes within a category are closed together against any force of change

2. The classes within a category are reused together

3. The classes within a category share some common function or
 achieve some common goal

If one class must change, all classes are likely to change

Dependency Metrics

 81

Afferent Couplings (Ca)
The number of classes outside this category that depend upon
classes within this category

Efferent Couplings (Ce)
The number of classes inside this category that depend upon classes
outside this category

Instability (I)

Ce

Ca+Ce

I = 0 means a category is maximally stable

I = 1 means a category is maximally instable

Instability Twitter4j Example

 82

How to be flexible and stable?

 83

Use abstract classes

Abstractness (A)

 84

of abstract classes in category

total # of classes in category

A = 1, all classes are abstract

A = 0, all classes are concrete

Main Sequence

 85

1

1

Abstraction

Instability

Main Sequence

(0,1)

(1,0)

Distance From Main Sequence

 86

Dn = | A + I - 1 |

Dn = 0 , category is on the main sequence

Dn = 1, category is far from main sequence

Values not near zero suggest restructuring the category

Twitter4j Example

 87

